This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370162 #18 Feb 27 2024 09:43:30 %S A370162 134,597,614,898,982,998,1649,2045,2078,2126,2386,2705,2855,2935,3394, %T A370162 3418,3899,5533,5686,5959,6982,7721,8567,8986,9182,9722,9998,10342, %U A370162 10587,10862,10942,11015,11363,11602,11667,11962,13238,13606,14054,14138,14506,14614,15658,15802,15898,16138,16382 %N A370162 Semiprimes that are the sum of two successive semiprimes and also the sum of three successive semiprimes. %H A370162 Robert Israel, <a href="/A370162/b370162.txt">Table of n, a(n) for n = 1..10000</a> %e A370162 a(3) = 614 is a term because 614 = 2 * 307 is a semiprime, A001358(98) = 305 = 5 * 61 and A001358(99) = 309 = 3 * 103 are two successive semiprimes whose sum is 614, and A001358(65) = 203 = 7 * 29, A001358(66) = 205 = 5 * 41 and A001358(67) = 206 = 2 * 103 are three successive semiprimes whose sum is 614. %p A370162 N:= 10^5: # for terms <= N %p A370162 P:= select(isprime, [2,seq(i,i=3..N/2,2)]): %p A370162 nP:= nops(P): %p A370162 SP:= 0: %p A370162 for i from 1 while P[i]^2 <= N do %p A370162 m:= ListTools:-BinaryPlace(P, N/P[i]); %p A370162 SP:= SP, op(P[i]*P[i..m]); %p A370162 od: %p A370162 SP:= sort([SP]): %p A370162 SS:= ListTools:-PartialSums(SP): %p A370162 SS2:= {seq(SS[i]-SS[i-2],i=3..nops(SS))}: %p A370162 SS3:= {seq(SS[i]-SS[i-3],i=4..nops(SS))}: %p A370162 A:=SS2 intersect SS3 intersect convert(SP,set): %p A370162 sort(convert(A,list)); %Y A370162 Cf A001358, A118717. Intersection of A092192 and A131610. %K A370162 nonn %O A370162 1,1 %A A370162 _Zak Seidov_ and _Robert Israel_, Feb 26 2024