cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370162 Semiprimes that are the sum of two successive semiprimes and also the sum of three successive semiprimes.

This page as a plain text file.
%I A370162 #18 Feb 27 2024 09:43:30
%S A370162 134,597,614,898,982,998,1649,2045,2078,2126,2386,2705,2855,2935,3394,
%T A370162 3418,3899,5533,5686,5959,6982,7721,8567,8986,9182,9722,9998,10342,
%U A370162 10587,10862,10942,11015,11363,11602,11667,11962,13238,13606,14054,14138,14506,14614,15658,15802,15898,16138,16382
%N A370162 Semiprimes that are the sum of two successive semiprimes and also the sum of three successive semiprimes.
%H A370162 Robert Israel, <a href="/A370162/b370162.txt">Table of n, a(n) for n = 1..10000</a>
%e A370162 a(3) = 614 is a term because 614 = 2 * 307 is a semiprime, A001358(98) = 305 = 5 * 61 and A001358(99) = 309 = 3 * 103 are two successive semiprimes whose sum is 614, and A001358(65) = 203 = 7 * 29, A001358(66) = 205 = 5 * 41 and A001358(67) = 206 = 2 * 103 are three successive semiprimes whose sum is 614.
%p A370162 N:= 10^5: # for terms <= N
%p A370162 P:= select(isprime, [2,seq(i,i=3..N/2,2)]):
%p A370162 nP:= nops(P):
%p A370162 SP:= 0:
%p A370162 for i from 1 while P[i]^2 <= N do
%p A370162   m:= ListTools:-BinaryPlace(P, N/P[i]);
%p A370162   SP:= SP, op(P[i]*P[i..m]);
%p A370162 od:
%p A370162 SP:= sort([SP]):
%p A370162 SS:= ListTools:-PartialSums(SP):
%p A370162 SS2:= {seq(SS[i]-SS[i-2],i=3..nops(SS))}:
%p A370162 SS3:= {seq(SS[i]-SS[i-3],i=4..nops(SS))}:
%p A370162 A:=SS2 intersect SS3 intersect convert(SP,set):
%p A370162 sort(convert(A,list));
%Y A370162 Cf  A001358, A118717.  Intersection of A092192 and A131610.
%K A370162 nonn
%O A370162 1,1
%A A370162 _Zak Seidov_ and _Robert Israel_, Feb 26 2024