A370166 Number of unlabeled loop-graphs covering n vertices without a non-loop edge with loops at both ends.
1, 1, 3, 9, 36, 180, 1313, 14709, 277755, 9304977, 568315345, 63806703305, 13200565313255, 5042653259803433, 3567050969262370941, 4688444463558713135201, 11491940559865490367844649, 52719458629883487816297211441, 454220675869975957947658748125099
Offset: 0
Keywords
Examples
Representatives of the a(0) = 1 through a(3) = 9 loop-graphs (loops shown as singletons): {} {{1}} {{1,2}} {{1},{2,3}} {{1},{2}} {{1,2},{1,3}} {{1},{1,2}} {{1},{2},{3}} {{1},{2},{1,3}} {{1},{1,2},{1,3}} {{1},{1,2},{2,3}} {{1,2},{1,3},{2,3}} {{1},{2},{1,3},{2,3}} {{1},{1,2},{1,3},{2,3}}
Crossrefs
The non-covering version is A339832.
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n] && !MatchQ[#,{_,{x_},_,{y_},_,{x_,y_},_}]&]]], {n,0,4}]
Formula
First differences of A339832 (the non-covering version).