cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370167 Irregular triangle read by rows where T(n,k) is the number of unlabeled simple graphs covering n vertices with k = 0..binomial(n,2) edges.

This page as a plain text file.
%I A370167 #11 Feb 19 2024 14:18:12
%S A370167 1,0,0,1,0,0,1,1,0,0,1,2,2,1,1,0,0,0,1,4,5,5,4,2,1,1,0,0,0,1,3,9,15,
%T A370167 20,22,20,14,9,5,2,1,1,0,0,0,0,1,6,20,41,73,110,133,139,126,95,64,40,
%U A370167 21,10,5,2,1,1,0,0,0,0,1,3,15,50,124,271,515,832,1181,1460,1581,1516,1291,970,658,400,220,114,56,24,11,5,2,1,1
%N A370167 Irregular triangle read by rows where T(n,k) is the number of unlabeled simple graphs covering n vertices with k = 0..binomial(n,2) edges.
%H A370167 Andrew Howroyd, <a href="/A370167/b370167.txt">Table of n, a(n) for n = 0..1350</a> (rows 0..20)
%e A370167 Triangle begins:
%e A370167   1
%e A370167   0
%e A370167   0  1
%e A370167   0  0  1  1
%e A370167   0  0  1  2  2  1  1
%e A370167   0  0  0  1  4  5  5  4  2  1  1
%e A370167   0  0  0  1  3  9 15 20 22 20 14  9  5  2  1  1
%t A370167 brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
%t A370167 Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}],{k}],Union@@#==Range[n]&]]], {n,0,5},{k,0,Binomial[n,2]}]
%o A370167 (PARI) \\ G(n) defined in A008406.
%o A370167 row(n)={Vecrev(G(n)-if(n>0, G(n-1)), binomial(n,2)+1)}
%o A370167 { for(n=0, 7, print(row(n))) } \\ _Andrew Howroyd_, Feb 19 2024
%Y A370167 Column sums are A000664.
%Y A370167 Row sums are A002494.
%Y A370167 This is the covering case of A008406, labeled A084546.
%Y A370167 The labeled version is A054548, row sums A006129, column sums A121251.
%Y A370167 The connected case is A054924, row sums A001349, column sums A002905.
%Y A370167 The labeled connected case is A062734, with loops A369195.
%Y A370167 The connected case with loops is A283755, row sums A054921.
%Y A370167 The labeled version w/ loops is A369199, row sums A322661, col sums A173219.
%Y A370167 Cf. A000666, A006125, A006649, A054547, A066383, A322700.
%K A370167 nonn,tabf
%O A370167 0,12
%A A370167 _Gus Wiseman_, Feb 15 2024
%E A370167 a(42) onwards from _Andrew Howroyd_, Feb 19 2024