This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370173 #14 Feb 29 2024 10:50:10 %S A370173 1,-1,1,-1,0,1,0,-2,1,1,0,-1,-2,2,1,0,0,-3,-1,3,1,0,0,-1,-5,1,4,1,0,0, %T A370173 0,-4,-6,4,5,1,0,0,0,-1,-9,-5,8,6,1,0,0,0,0,-5,-15,-1,13,7,1,0,0,0,0, %U A370173 -1,-14,-20,7,19,8,1,0,0,0,0,0,-6,-29,-21,20,26,9,1 %N A370173 Riordan array (1-x-x^2, x*(1+x)). %C A370173 Triangle T(n,k) read by rows : matrix product of A155112*A130595. %C A370173 Triangle T(n,k), read by rows, given by [-1, 2, -1/2, -1/2, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. %F A370173 T(n,k) = T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = -1, T(n,0) = 0 for n>2, T(n,k) = 0 if k>n. %F A370173 T(n,k) = Sum_{j = k..n} A155112(n,j)*A130595(j,k). %F A370173 Sum_{k=0..n} T(n,k)*x^k = A000007(n), A155020(n), A155116(n), A155117(n), A155119(n), A155127(n), A155130(n), A155132(n), A155144(n), A155157(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively. %e A370173 Triangle T(n,k) begins: %e A370173 1; %e A370173 -1, 1; %e A370173 -1, 0, 1; %e A370173 0, -2, 1, 1; %e A370173 0, -1, -2, 2, 1; %e A370173 0, 0, -3, -1, 3, 1; %e A370173 ... %o A370173 (Python) %o A370173 from functools import cache %o A370173 @cache %o A370173 def T(n, k): %o A370173 if k > n: return 0 %o A370173 if n == 0: return 1 %o A370173 if k == 0: return -1 if n == 1 or n == 2 else 0 %o A370173 return T(n-1, k-1) + T(n-2, k-1) %o A370173 for n in range(9): %o A370173 print([T(n, k) for k in range(n+1)]) # _Peter Luschny_, Feb 28 2024 %Y A370173 Cf. A000007, A155020, A155116, A155117, A155119, A155127, A155130, A155132, A155144, A155157. %Y A370173 Cf. A084938, A130595, A155112. %K A370173 sign,tabl,easy %O A370173 0,8 %A A370173 _Philippe Deléham_, Feb 27 2024