A370181 Size of the group Z_5*/(Z_5*)^n, where Z_5 is the ring of 5-adic integers.
1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 25, 2, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 50, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 1, 2, 25, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10
Offset: 1
Examples
We have Z_5*/(Z_5*)^5 = Z_5* / ((1+25Z_5) U (7+25Z_5) U (18+25Z_5) U (24+25Z_5)) = (Z/25Z)*/((1+25Z) U (7+25Z) U (18+25Z) U (24+25Z)) = C_5, so a(5) = 5. We have Z_5*/(Z_5*)^10 = Z_5* / ((1+25Z_5) U (24+25Z_5)) = (Z/25Z)*/((1+25Z) U (25+25Z)) = C_10, so a(10) = 10.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Module[{e2 = IntegerExponent[n, 2], e5 = IntegerExponent[n, 5]}, 2^Min[e2, 2] * 5^e5]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
-
PARI
a(n,{p=5}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)
Formula
Multiplicative with a(5^e) = 5^e, a(2) = 2, a(2^e) = 4 for e >= 2 and a(p^e) = 1 for primes p != 2, 5.
From Amiram Eldar, May 20 2024: (Start)
Dirichlet g.f.: (1 + 1/2^s + 1/2^(2*s-1)) * ((1 - 1/5^s)/(1 - 1/5^(s-1))) * zeta(s).
Sum_{k=1..n} a(k) ~ (8*n/(5*log(5))) * (log(n) + gamma - 1 + (3/4)*log(5/2)), where gamma is Euler's constant (A001620). (End)
Comments