cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370181 Size of the group Z_5*/(Z_5*)^n, where Z_5 is the ring of 5-adic integers.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 25, 2, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 50, 1, 4, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 1, 2, 25, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10
Offset: 1

Views

Author

Jianing Song, Apr 30 2024

Keywords

Comments

We have that Z_5*/(Z_5*)^n is the inverse limit of (Z/5^iZ)*/((Z/5^iZ)*)^n as i tends to infinity. Write n = 5^e * n' with n' not being divisible by 5, then the group is cyclic of order 5^e * gcd(4,n'). See A370050.

Examples

			We have Z_5*/(Z_5*)^5 = Z_5* / ((1+25Z_5) U (7+25Z_5) U (18+25Z_5) U (24+25Z_5)) = (Z/25Z)*/((1+25Z) U (7+25Z) U (18+25Z) U (24+25Z)) = C_5, so a(5) = 5.
We have Z_5*/(Z_5*)^10 = Z_5* / ((1+25Z_5) U (24+25Z_5)) = (Z/25Z)*/((1+25Z) U (25+25Z)) = C_10, so a(10) = 10.
		

Crossrefs

Cf. A370566.

Programs

  • Mathematica
    a[n_] := Module[{e2 = IntegerExponent[n, 2], e5 = IntegerExponent[n, 5]}, 2^Min[e2, 2] * 5^e5]; Array[a, 100] (* Amiram Eldar, May 20 2024 *)
  • PARI
    a(n,{p=5}) = my(e = valuation(n, p)); p^e*gcd(p-1, n/p^e)

Formula

Multiplicative with a(5^e) = 5^e, a(2) = 2, a(2^e) = 4 for e >= 2 and a(p^e) = 1 for primes p != 2, 5.
From Amiram Eldar, May 20 2024: (Start)
Dirichlet g.f.: (1 + 1/2^s + 1/2^(2*s-1)) * ((1 - 1/5^s)/(1 - 1/5^(s-1))) * zeta(s).
Sum_{k=1..n} a(k) ~ (8*n/(5*log(5))) * (log(n) + gamma - 1 + (3/4)*log(5/2)), where gamma is Euler's constant (A001620). (End)