This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370189 #26 Feb 19 2024 10:49:17 %S A370189 0,1,4,-18,-240,1900,42372,-482552,-14970816,222612624,8825080100, %T A370189 -161981127968,-7809130867824,170561613679808,9678967816041188, %U A370189 -245159013138710400,-16000787866533953280,461102348510408544512,34017524842099233036996,-1098983344602124698522112,-90417110945911655996319600 %N A370189 Imaginary part of (1 + n*i)^n, where i is the imaginary unit. %C A370189 The ratio a(n)/A121626(n) converges to c for odd n and to -1/c for even n for n -> oo with c = 0.6420926... (= cot(1) (A073449) from _Moritz Firsching_, Feb 14 2024). See linked plots. %H A370189 Paolo Xausa, <a href="/A370189/b370189.txt">Table of n, a(n) for n = 0..350</a> %H A370189 Hugo Pfoertner, <a href="https://oeis.org/plot2a?name1=A370189&name2=A121626&tform1=untransformed&tform2=untransformed&shift=0&radiop1=ratio&drawpoints=true">Plot of ratio a(n)/A121626(n)</a>, using Plot 2. %H A370189 Hugo Pfoertner, <a href="https://oeis.org/plot2a?name1=A121626&name2=A370189&tform1=asinh&tform2=asinh&shift=0&radiop1=xy&drawpoints=true">Plot of asinh(a(n)) vs asinh(A121626(n))</a>, using Plot 2. %F A370189 a(n) = Sum_{j=0..floor((n-1)/2)} binomial(n,2*j+1)*n^(2*j+1)*(-1)^j. - _Chai Wah Wu_, Feb 15 2024 %t A370189 Array[Im[(1+#*I)^#] &, 25, 0] (* _Paolo Xausa_, Feb 19 2024 *) %o A370189 (PARI) a370189(n) = imag((1+I*n)^n) %o A370189 (Python) %o A370189 from math import comb %o A370189 def A370189(n): return sum(comb(n,j)*n**j*(-1 if j-1&2 else 1) for j in range(1,n+1,2)) # _Chai Wah Wu_, Feb 15 2024 %Y A370189 Cf. A121626 (real part), A115415, A115416. %Y A370189 Cf. A073449. %K A370189 sign,easy %O A370189 0,3 %A A370189 _Hugo Pfoertner_, Feb 14 2024