cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370203 Triangular array read by rows. T(n,k) is the number of binary relations on [n] that have exactly k accessible points, n>=0, 0<=k<=n.

This page as a plain text file.
%I A370203 #13 Feb 17 2024 13:19:13
%S A370203 1,1,1,3,6,7,25,75,159,253,543,2172,6354,17004,39463,29281,146405,
%T A370203 532130,1841650,6808765,24196201,3781503,22689018,97165485,395729820,
%U A370203 1801073385,9917482698,56481554827
%N A370203 Triangular array read by rows.  T(n,k) is the number of binary relations on [n] that have exactly k accessible points, n>=0, 0<=k<=n.
%C A370203 Let x be in [n]. Then x is accessible by the binary relation R if (x,x) is in R^j for some j>=1. In other words, x is accesible by R if (x,x) is in the transitive closure of R. See Schwarz link.
%H A370203 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.
%H A370203 S. Schwarz, <a href="http://dx.doi.org/10.21136/CMJ.1970.100989">On the semigroup of binary relations on a finite set</a>, Czechoslovak Mathematical Journal, 1970.
%F A370203 Sum_{n>=0} T(n,k)*y^k*x^n/(n!*2^binomial(n,2)) = 1/(E(x) @ exp(-(s(2yx)-yx + x))) where E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)), s(x) = Sum_{n>=0} A003030(n)x^n/n! and @ is the exponential Hadamard product (see Panafieu and Dovgal).
%e A370203 Triangle begins:
%e A370203      1;
%e A370203      1,      1;
%e A370203      3,      6,      7;
%e A370203     25,     75,    159,     253;
%e A370203    543,   2172,   6354,   17004,   39463;
%e A370203  29281, 146405, 532130, 1841650, 6808765, 24196201;
%e A370203 ...
%t A370203 nn = 6; B[n_] := n! 2^Binomial[n, 2]; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]];s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];
%t A370203 ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /. Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}]; Map[Select[#, # > 0 &] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(s[2 y x] - y x + x)]], {x, 0, nn}], {x, y}]]
%Y A370203 Cf. A002416 (row sums), A003024 (column k = 0), A366866 (main diagonal), A003030.
%K A370203 nonn,tabl
%O A370203 0,4
%A A370203 _Geoffrey Critzer_, Feb 11 2024