This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370207 #21 Feb 11 2024 18:55:25 %S A370207 1,0,1,1,1,1,2,2,1,1,6,4,3,1,1,8,10,5,3,1,1,24,18,13,6,3,1,1,30,42,23, %T A370207 14,6,3,1,1,74,72,55,26,15,6,3,1,1,110,146,95,61,27,15,6,3,1,1,219, %U A370207 256,201,109,64,28,15,6,3,1,1,309,475,351,227,115,65,28,15,6,3,1,1 %N A370207 Number T(n,k) of unordered pairs of partitions of n with exactly k common parts; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A370207 Alois P. Heinz, <a href="/A370207/b370207.txt">Rows n = 0..200, flattened</a> %F A370207 T(n,k) = (A370005(n,k) + A072233(n,k))/2. %e A370207 T(4,0) = 6: (1111,22), (1111,4), (211,4), (22,31), (22,4), (31,4). %e A370207 T(4,1) = 4: (1111,31), (211,22), (211,31), (4,4). %e A370207 T(4,2) = 3: (1111,211), (22,22), (31,31). %e A370207 T(4,3) = 1: (211,211). %e A370207 T(4,4) = 1: (1111,1111). %e A370207 Triangle T(n,k) begins: %e A370207 1; %e A370207 0, 1; %e A370207 1, 1, 1; %e A370207 2, 2, 1, 1; %e A370207 6, 4, 3, 1, 1; %e A370207 8, 10, 5, 3, 1, 1; %e A370207 24, 18, 13, 6, 3, 1, 1; %e A370207 30, 42, 23, 14, 6, 3, 1, 1; %e A370207 74, 72, 55, 26, 15, 6, 3, 1, 1; %e A370207 110, 146, 95, 61, 27, 15, 6, 3, 1, 1; %e A370207 219, 256, 201, 109, 64, 28, 15, 6, 3, 1, 1; %e A370207 ... %p A370207 b:= proc(n, m, i) option remember; `if`(m=0, 1, `if`(i<1, 0, %p A370207 add(add(expand(b(sort([n-i*j, m-i*h])[], i-1)* %p A370207 x^min(j, h)), h=0..m/i), j=0..n/i))) %p A370207 end: %p A370207 g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A370207 add(expand(g(n-i*j, i-1)*x^j), j=0..n/i))) %p A370207 end: %p A370207 T:= (n, k)-> (coeff(b(n$3), x, k)+coeff(g(n$2), x, k))/2: %p A370207 seq(seq(T(n, k), k=0..n), n=0..12); %Y A370207 Column k=0 gives A260669. %Y A370207 Row sums and T(2n,n) give A086737. %Y A370207 Cf. A000041, A000217, A008284, A072233, A370005. %K A370207 nonn,tabl %O A370207 0,7 %A A370207 _Alois P. Heinz_, Feb 11 2024