This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370208 #29 Feb 12 2024 12:44:38 %S A370208 1,1,1,3,6,13,39,87,348,24,841,4205,480,11643,69858,9420,240,227893, %T A370208 1595251,206640,9240,6285807,50286456,5389552,299040,3360,243593041, %U A370208 2192337369,172041408,9848160,211680 %N A370208 Triangular array read by rows. T(n,k) is the number of idempotent binary relations on [n] having no proper power primitive (A360718) with exactly k irreflexive points. %H A370208 David Rosenblatt, <a href="http://dx.doi.org/10.6028/jres.067B.020">On the graphs of finite Boolean relation matrices</a>, Journal of Research, National Bureau of Standards, Vol 67B No. 4 Oct-Dec 1963. %F A370208 E.g.f.: 2(exp(y*x*c'(x)/2)-1)*exp(c(x))*exp(x) + exp(c(x))*(y*x*exp(x) + exp(x)) where c(x) is the e.g.f. for A002031. %e A370208 Triangle begins %e A370208 1; %e A370208 1, 1; %e A370208 3, 6; %e A370208 13, 39; %e A370208 87, 348, 24; %e A370208 841, 4205, 480; %e A370208 11643, 69858, 9420, 240; %e A370208 227893, 1595251, 206640, 9240; %e A370208 ... %t A370208 nn = 9; A[x_] := Sum[x^n/n! Exp[(2^n - 1) x], {n, 0, nn}]; %t A370208 c[x_] := Log[A[x]] - x; Map[Select[#, # > 0 &] &, %t A370208 Range[0, nn]! CoefficientList[ %t A370208 Series[2 (Exp[ y x D[c[ x], x]/2] - 1) Exp[c[x]] Exp[ x] + %t A370208 Exp[c[ x]] (y x Exp[ x] + Exp[ x]), {x, 0, nn}], {x, y}]] %Y A370208 Cf. A360718 (row sums), A001831 (column k=0), A360743 (T(n,0) + T(n,1) ), A151817 (T(2n,n) for n>=2), A002031. %K A370208 nonn,tabf %O A370208 0,4 %A A370208 _Geoffrey Critzer_, Feb 11 2024