This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370219 #36 Mar 27 2024 15:45:56 %S A370219 1,1,1,0,2,1,1,1,1,0,2,0,2,1,0,1,2,0,0,3,1,1,1,1,1,1,0,2,1,0,2,1,1,0, %T A370219 1,2,1,0,0,3,0,2,1,1,0,2,0,2,0,1,2,1,0,1,1,2,0,1,0,3,0,0,3,1,0,0,2,2, %U A370219 0,0,1,3,0,0,0,4,1,1,1,1,1,1,1,1,0,2,1,1,0,2,1 %N A370219 Irregular triangle T(n,k) read by rows: row n lists run-length encoding d_k values (see comments) for the properly nested string of parentheses encoded by A063171(n). %C A370219 As explained by Knuth (2011), a string of properly nested parentheses of length 2*m (for m >= 1) can be run-length encoded as ()d_1()d_2 ... ()d_m, where d_k are nonnegative integers such that d_1 + d_2 + ... + d_k <= k for 1 <= k < m and d_1 + d_2 + ... + d_m = m. %D A370219 Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, pp. 440-444. %H A370219 Paolo Xausa, <a href="/A370219/b370219.txt">Table of n, a(n) for n = 1..15521</a> (rows 1..2055 of the triangle, flattened). %F A370219 T(n,k) = A370220(n,k+1) - A370220(n,k) - 1, for 1 <= k < A072643(n). %e A370219 The following table lists d_k values for properly nested strings having lengths up to 8, along with z_k, p_k and c_k values from related combinatorial objects (see related sequences for more information). Cf. Knuth (2011), p. 442, Table 1. %e A370219 . %e A370219 | Properly | | | A370220 | A370221 | A370222 %e A370219 | Nested | A063171 | d d d d | z z z z | p p p p | c c c c %e A370219 n | String | (n) | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 %e A370219 ----+----------+----------+---------+---------+---------+--------- %e A370219 1 | () | 10 | 1 | 1 | 1 | 0 %e A370219 2 | ()() | 1010 | 1 1 | 1 3 | 1 2 | 0 0 %e A370219 3 | (()) | 1100 | 0 2 | 1 2 | 2 1 | 0 1 %e A370219 4 | ()()() | 101010 | 1 1 1 | 1 3 5 | 1 2 3 | 0 0 0 %e A370219 5 | ()(()) | 101100 | 1 0 2 | 1 3 4 | 1 3 2 | 0 0 1 %e A370219 6 | (())() | 110010 | 0 2 1 | 1 2 5 | 2 1 3 | 0 1 0 %e A370219 7 | (()()) | 110100 | 0 1 2 | 1 2 4 | 2 3 1 | 0 1 1 %e A370219 8 | ((())) | 111000 | 0 0 3 | 1 2 3 | 3 2 1 | 0 1 2 %e A370219 9 | ()()()() | 10101010 | 1 1 1 1 | 1 3 5 7 | 1 2 3 4 | 0 0 0 0 %e A370219 10 | ()()(()) | 10101100 | 1 1 0 2 | 1 3 5 6 | 1 2 4 3 | 0 0 0 1 %e A370219 11 | ()(())() | 10110010 | 1 0 2 1 | 1 3 4 7 | 1 3 2 4 | 0 0 1 0 %e A370219 12 | ()(()()) | 10110100 | 1 0 1 2 | 1 3 4 6 | 1 3 4 2 | 0 0 1 1 %e A370219 13 | ()((())) | 10111000 | 1 0 0 3 | 1 3 4 5 | 1 4 3 2 | 0 0 1 2 %e A370219 14 | (())()() | 11001010 | 0 2 1 1 | 1 2 5 7 | 2 1 3 4 | 0 1 0 0 %e A370219 15 | (())(()) | 11001100 | 0 2 0 2 | 1 2 5 6 | 2 1 4 3 | 0 1 0 1 %e A370219 16 | (()())() | 11010010 | 0 1 2 1 | 1 2 4 7 | 2 3 1 4 | 0 1 1 0 %e A370219 17 | (()()()) | 11010100 | 0 1 1 2 | 1 2 4 6 | 2 3 4 1 | 0 1 1 1 %e A370219 18 | (()(())) | 11011000 | 0 1 0 3 | 1 2 4 5 | 2 4 3 1 | 0 1 1 2 %e A370219 19 | ((()))() | 11100010 | 0 0 3 1 | 1 2 3 7 | 3 2 1 4 | 0 1 2 0 %e A370219 20 | ((())()) | 11100100 | 0 0 2 2 | 1 2 3 6 | 3 2 4 1 | 0 1 2 1 %e A370219 21 | ((()())) | 11101000 | 0 0 1 3 | 1 2 3 5 | 3 4 2 1 | 0 1 2 2 %e A370219 22 | (((()))) | 11110000 | 0 0 0 4 | 1 2 3 4 | 4 3 2 1 | 0 1 2 3 %t A370219 zlist[m_] := With[{r = 2*Range[2, m]}, Reverse[Map[Join[{1}, #] &, Select[Subsets[Range[2, 2*m-1], {m-1}], Min[r-#] > 0 &]]]]; %t A370219 dlist[m_] := Map[Append[#, m - Total[#]] &, Map[Differences, zlist[m]] - 1]; %t A370219 Array[Delete[dlist[#], 0] &, 5] %t A370219 (* 2nd program: uses Algorithm Z from Knuth's TAOCP section 7.2.1.6, exercise 2 *) %t A370219 zlist[m_] := Block[{z = 2*Range[m] - 1, j}, %t A370219 Reap[ %t A370219 While[True, %t A370219 Sow[z]; %t A370219 If[z[[m-1]] < z[[m]] - 1, %t A370219 z[[m]]--, %t A370219 j = m - 1; z[[m]] = 2*m - 1; %t A370219 While[j > 1 && z[[j-1]] == z[[j]] - 1, z[[j]] = 2*j - 1; j--]; %t A370219 If[j == 1,Break[]]; %t A370219 z[[j]]--] %t A370219 ]][[2]][[1]]]; %t A370219 dlist[m_] := Map[Append[#, m - Total[#]] &, Map[Differences, zlist[m]] - 1]; %t A370219 Join[{{1}}, Array[Delete[dlist[#], 0] &, 4, 2]] (* _Paolo Xausa_, Mar 25 2024 *) %Y A370219 Cf. A000108, A063171, A072643 (row lengths and row sums). %Y A370219 Cf. A370220, A370221, A370222. %K A370219 nonn,tabf %O A370219 1,5 %A A370219 _Paolo Xausa_, Feb 12 2024