This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370220 #29 Mar 27 2024 15:45:14 %S A370220 1,1,3,1,2,1,3,5,1,3,4,1,2,5,1,2,4,1,2,3,1,3,5,7,1,3,5,6,1,3,4,7,1,3, %T A370220 4,6,1,3,4,5,1,2,5,7,1,2,5,6,1,2,4,7,1,2,4,6,1,2,4,5,1,2,3,7,1,2,3,6, %U A370220 1,2,3,5,1,2,3,4,1,3,5,7,9,1,3,5,7,8,1,3,5,6,9 %N A370220 Irregular triangle T(n,k) read by rows: row n lists the positions of left parentheses for the properly nested string of parentheses encoded by A063171(n). %C A370220 Knuth (2011) refers to these terms as z_k and notes that z_1, z_2, ..., z_m is one of the binomial(2*m,m) combinations of m >= 1 objects from the set {1, 2, ..., 2*m}, subject to the constraint that z_(k-1) < z_k < 2*k for 1 <= k <= m and assuming that z_0 = 0. %D A370220 Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, pp. 440-444. See also exercise 2, p. 471 and p. 781. %H A370220 Paolo Xausa, <a href="/A370220/b370220.txt">Table of n, a(n) for n = 1..15521</a> (rows 1..2055 of the triangle, flattened). %F A370220 T(n,k) = T(n,k+1) - A370219(n,k) - 1, for 1 <= k < A072643(n). %e A370220 The following table lists z_k values for properly nested strings having lengths up to 8, along with d_k, p_k and c_k values from related combinatorial objects (see related sequences for more information). Cf. Knuth (2011), p. 442, Table 1. %e A370220 . %e A370220 | Properly | | A370219 | | A370221 | A370222 %e A370220 | Nested | A063171 | d d d d | z z z z | p p p p | c c c c %e A370220 n | String | (n) | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 %e A370220 ----+----------+----------+---------+---------+---------+--------- %e A370220 1 | () | 10 | 1 | 1 | 1 | 0 %e A370220 2 | ()() | 1010 | 1 1 | 1 3 | 1 2 | 0 0 %e A370220 3 | (()) | 1100 | 0 2 | 1 2 | 2 1 | 0 1 %e A370220 4 | ()()() | 101010 | 1 1 1 | 1 3 5 | 1 2 3 | 0 0 0 %e A370220 5 | ()(()) | 101100 | 1 0 2 | 1 3 4 | 1 3 2 | 0 0 1 %e A370220 6 | (())() | 110010 | 0 2 1 | 1 2 5 | 2 1 3 | 0 1 0 %e A370220 7 | (()()) | 110100 | 0 1 2 | 1 2 4 | 2 3 1 | 0 1 1 %e A370220 8 | ((())) | 111000 | 0 0 3 | 1 2 3 | 3 2 1 | 0 1 2 %e A370220 9 | ()()()() | 10101010 | 1 1 1 1 | 1 3 5 7 | 1 2 3 4 | 0 0 0 0 %e A370220 10 | ()()(()) | 10101100 | 1 1 0 2 | 1 3 5 6 | 1 2 4 3 | 0 0 0 1 %e A370220 11 | ()(())() | 10110010 | 1 0 2 1 | 1 3 4 7 | 1 3 2 4 | 0 0 1 0 %e A370220 12 | ()(()()) | 10110100 | 1 0 1 2 | 1 3 4 6 | 1 3 4 2 | 0 0 1 1 %e A370220 13 | ()((())) | 10111000 | 1 0 0 3 | 1 3 4 5 | 1 4 3 2 | 0 0 1 2 %e A370220 14 | (())()() | 11001010 | 0 2 1 1 | 1 2 5 7 | 2 1 3 4 | 0 1 0 0 %e A370220 15 | (())(()) | 11001100 | 0 2 0 2 | 1 2 5 6 | 2 1 4 3 | 0 1 0 1 %e A370220 16 | (()())() | 11010010 | 0 1 2 1 | 1 2 4 7 | 2 3 1 4 | 0 1 1 0 %e A370220 17 | (()()()) | 11010100 | 0 1 1 2 | 1 2 4 6 | 2 3 4 1 | 0 1 1 1 %e A370220 18 | (()(())) | 11011000 | 0 1 0 3 | 1 2 4 5 | 2 4 3 1 | 0 1 1 2 %e A370220 19 | ((()))() | 11100010 | 0 0 3 1 | 1 2 3 7 | 3 2 1 4 | 0 1 2 0 %e A370220 20 | ((())()) | 11100100 | 0 0 2 2 | 1 2 3 6 | 3 2 4 1 | 0 1 2 1 %e A370220 21 | ((()())) | 11101000 | 0 0 1 3 | 1 2 3 5 | 3 4 2 1 | 0 1 2 2 %e A370220 22 | (((()))) | 11110000 | 0 0 0 4 | 1 2 3 4 | 4 3 2 1 | 0 1 2 3 %t A370220 zlist[m_] := With[{r = 2*Range[2, m]}, Reverse[Map[Join[{1}, #] &, Select[Subsets[Range[2, 2*m-1], {m-1}], Min[r-#] > 0 &]]]]; %t A370220 Array[Delete[zlist[#], 0] &, 5] %t A370220 (* 2nd program: uses Algorithm Z from Knuth's TAOCP section 7.2.1.6, exercise 2 *) %t A370220 zlist[m_] := Block[{z = 2*Range[m] - 1, j}, %t A370220 Reap[ %t A370220 While[True, %t A370220 Sow[z]; %t A370220 If[z[[m-1]] < z[[m]] - 1, %t A370220 z[[m]]--, %t A370220 j = m - 1; z[[m]] = 2*m - 1; %t A370220 While[j > 1 && z[[j-1]] == z[[j]] - 1, z[[j]] = 2*j - 1; j--]; %t A370220 If[j == 1,Break[]]; %t A370220 z[[j]]--] %t A370220 ]][[2]][[1]]]; %t A370220 Join[{{1}}, Array[Delete[zlist[#], 0] &, 4, 2]] %Y A370220 Cf. A000108, A063171, A072643 (row lengths). %Y A370220 Cf. A370219, A370221, A370222, A370290 (row sums), A371409 (right parentheses). %K A370220 nonn,tabf %O A370220 1,3 %A A370220 _Paolo Xausa_, Feb 12 2024