A370221 Irregular triangle T(n,k) read by rows: row n lists the values encoding a permutation (see comments) related to the properly nested string of parentheses encoded by A063171(n).
1, 1, 2, 2, 1, 1, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 2, 1, 1, 2, 3, 4, 1, 2, 4, 3, 1, 3, 2, 4, 1, 3, 4, 2, 1, 4, 3, 2, 2, 1, 3, 4, 2, 1, 4, 3, 2, 3, 1, 4, 2, 3, 4, 1, 2, 4, 3, 1, 3, 2, 1, 4, 3, 2, 4, 1, 3, 4, 2, 1, 4, 3, 2, 1, 1, 2, 3, 4, 5, 1, 2, 3, 5, 4, 1, 2, 4, 3, 5
Offset: 1
Examples
The following table lists p_k values for properly nested strings having lengths up to 8, along with d_k, z_k and c_k values from related combinatorial objects (see related sequences for more information). Cf. Knuth (2011), p. 442, Table 1. . | Properly | | A370219 | A370220 | | A370222 | Nested | A063171 | d d d d | z z z z | p p p p | c c c c n | String | (n) | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 | 1 2 3 4 ----+----------+----------+---------+---------+---------+--------- 1 | () | 10 | 1 | 1 | 1 | 0 2 | ()() | 1010 | 1 1 | 1 3 | 1 2 | 0 0 3 | (()) | 1100 | 0 2 | 1 2 | 2 1 | 0 1 4 | ()()() | 101010 | 1 1 1 | 1 3 5 | 1 2 3 | 0 0 0 5 | ()(()) | 101100 | 1 0 2 | 1 3 4 | 1 3 2 | 0 0 1 6 | (())() | 110010 | 0 2 1 | 1 2 5 | 2 1 3 | 0 1 0 7 | (()()) | 110100 | 0 1 2 | 1 2 4 | 2 3 1 | 0 1 1 8 | ((())) | 111000 | 0 0 3 | 1 2 3 | 3 2 1 | 0 1 2 9 | ()()()() | 10101010 | 1 1 1 1 | 1 3 5 7 | 1 2 3 4 | 0 0 0 0 10 | ()()(()) | 10101100 | 1 1 0 2 | 1 3 5 6 | 1 2 4 3 | 0 0 0 1 11 | ()(())() | 10110010 | 1 0 2 1 | 1 3 4 7 | 1 3 2 4 | 0 0 1 0 12 | ()(()()) | 10110100 | 1 0 1 2 | 1 3 4 6 | 1 3 4 2 | 0 0 1 1 13 | ()((())) | 10111000 | 1 0 0 3 | 1 3 4 5 | 1 4 3 2 | 0 0 1 2 14 | (())()() | 11001010 | 0 2 1 1 | 1 2 5 7 | 2 1 3 4 | 0 1 0 0 15 | (())(()) | 11001100 | 0 2 0 2 | 1 2 5 6 | 2 1 4 3 | 0 1 0 1 16 | (()())() | 11010010 | 0 1 2 1 | 1 2 4 7 | 2 3 1 4 | 0 1 1 0 17 | (()()()) | 11010100 | 0 1 1 2 | 1 2 4 6 | 2 3 4 1 | 0 1 1 1 18 | (()(())) | 11011000 | 0 1 0 3 | 1 2 4 5 | 2 4 3 1 | 0 1 1 2 19 | ((()))() | 11100010 | 0 0 3 1 | 1 2 3 7 | 3 2 1 4 | 0 1 2 0 20 | ((())()) | 11100100 | 0 0 2 2 | 1 2 3 6 | 3 2 4 1 | 0 1 2 1 21 | ((()())) | 11101000 | 0 0 1 3 | 1 2 3 5 | 3 4 2 1 | 0 1 2 2 22 | (((()))) | 11110000 | 0 0 0 4 | 1 2 3 4 | 4 3 2 1 | 0 1 2 3
References
- Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, pp. 440-444.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..15521 (rows 1..2055 of the triangle, flattened).
Crossrefs
Programs
-
Mathematica
slist[m_] := Reverse[Select[Permutations[PadLeft[Table[-1, m], 2*m, 1]], Min[Accumulate[#]] >= 0 &]]; plist[s_] := Flatten[Reap[Module[{p, p0 = Flatten[Position[s, -1]], p1 = Flatten[Position[s, 1]], p1r}, p1r = p1; For[i = 1, i <= Length[p0], i++, p = Max[Select[p1r, # < p0[[i]] &]]; Sow[Position[p1, p]]; p1r = DeleteCases[p1r, p]]]][[2,1]]]; Array[Delete[Map[plist, slist[#]], 0] &, 5]
Comments