This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370224 #17 May 27 2025 14:59:28 %S A370224 0,0,1,6,34,194,1275,10196,99916,1164684,15912733,250678314, %T A370224 4507337214,91329638814,2069998845799,52044680125128,1443501036281272, %U A370224 43878538143611192,1455221004684341721,52393847060853213806,2040530475078456780538,85617882485110184661402 %N A370224 Number of chordless cycles in the n X n bishop graph. %H A370224 Andrew Howroyd, <a href="/A370224/b370224.txt">Table of n, a(n) for n = 1..200</a> %H A370224 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BishopGraph.html">Bishop Graph</a>. %H A370224 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChordlessCycle.html">Chordless Cycle</a>. %F A370224 For n > 1, a(n) = A370210(n) + A303542(n). %o A370224 (PARI) \\ see also program in A303542. %o A370224 CCGenRook(sig)={ %o A370224 my(p=0,s=0,x='x,y='y); %o A370224 forstep(i=#sig, 1, -1, my(w=sig[i]); %o A370224 if(i<#sig, p *= y^(w-sig[i+1])); %o A370224 s += polcoef(p,1,x); %o A370224 p += x*deriv(deriv(p+y^w,y),y)/2 + 2*x*deriv(deriv(p,x),x) + 2*x*deriv(deriv(p,y),x); %o A370224 p -= x^i*polcoef(p,i,x); %o A370224 ); %o A370224 s; %o A370224 } %o A370224 Bishop(n, white)=vector(n-if(white, n%2, 1-n%2), i, n-i+if(white, 1-i%2, i%2)); %o A370224 a(n) = subst(CCGenRook(Bishop(n,0)) + CCGenRook(Bishop(n,1)), y, 1) \\ _Andrew Howroyd_, May 27 2025 %Y A370224 Cf. A370210 (black bishop), A303542 (white bishop), A370228. %K A370224 nonn %O A370224 1,4 %A A370224 _Eric W. Weisstein_, Feb 12 2024 %E A370224 a(21) onwards from _Andrew Howroyd_, May 27 2025