A370226 a(n) = n!^2 * [x^n] polylog(2,x)^4.
0, 0, 0, 0, 576, 14400, 424800, 16405200, 827179584, 53370793728, 4311612000000, 427527300499200, 51134102684222976, 7266620131443459072, 1211052516384021083136, 234033301581064751001600, 51924413277653839769124864, 13111663349134716037934874624, 3739245464888523341104099885056
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..250
- Vaclav Kotesovec, Recurrence (of order 10)
- Eric Weisstein's World of Mathematics, Polylogarithm.
- Wikipedia, Polylogarithm.
Programs
-
Mathematica
CoefficientList[Series[PolyLog[2, x]^4, {x, 0, 20}], x] * Range[0, 20]!^2 Table[n!^2 * Sum[Sum[1/(k*(j-k))^2, {k, 1, j-1}] * Sum[1/(k*(n-j-k))^2, {k, 1, n-j-1}], {j, 1, n-1}], {n, 0, 20}]
Formula
a(n)/(n!)^2 ~ Pi^6 / (54*n^2).
Comments