cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370232 Triangle read by rows. T(n, k) = binomial(n + k, 2*k)^2.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 36, 25, 1, 1, 100, 225, 49, 1, 1, 225, 1225, 784, 81, 1, 1, 441, 4900, 7056, 2025, 121, 1, 1, 784, 15876, 44100, 27225, 4356, 169, 1, 1, 1296, 44100, 213444, 245025, 81796, 8281, 225, 1, 1, 2025, 108900, 853776, 1656369, 1002001, 207025, 14400, 289, 1
Offset: 0

Views

Author

Peter Luschny, Feb 12 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1,     1;
[2] 1,     9,       1;
[3] 1,    36,      25,       1;
[4] 1,   100,     225,      49,       1;
[5] 1,   225,    1225,     784,      81,      1;
[6] 1,   441,    4900,    7056,    2025,    121,     1;
[7] 1,   784,   15876,   44100,   27225,   4356,   169,   1;
		

Crossrefs

Shifted bisection of A182878.
Cf. A370233 (c=2), A188648 (row sums), A188662 (central terms).

Programs

  • Mathematica
    Table[Binomial[n + k, 2*k]^2, {n, 0, 7}, {k, 0, n}] // Flatten

Formula

T(n, k) = [z^k] P(n, z) where P(n, z) = Sum_{k=0..n} binomial(n + k, 2*k) * Pochhammer(n - k + c, 2*k) * z^k / (2*k)! and c = 1.
T(n, k) = [z^k] hypergeom([-n, -n, 1 + n, 1 + n], [1/2, 1/2, 1], z/16).