This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370236 #25 Feb 16 2024 04:28:03 %S A370236 1,5,5,15,40,15,35,175,175,35,70,560,1050,560,70,126,1470,4410,4410, %T A370236 1470,126,210,3360,14700,23520,14700,3360,210,330,6930,41580,97020, %U A370236 97020,41580,6930,330,495,13200,103950,332640,485100,332640,103950,13200,495 %N A370236 Triangle read by rows: T(n, k) is the number of partitions of genus 1 and k parts of the n-set (n >= 4, 2 <= k <= n-2). %C A370236 The formula given below was conjectured by Martha Yip and proved by Robert Cori and Gábor Hetyei. %C A370236 More generally one may consider genus-dependent Stirling numbers S(n, k, g) that count the partitions of genus g and k parts of the n-set. %C A370236 Then T(n, k) = S(n, k, 1). See Robert Coquereaux and Jean-Bernard Zuber. %H A370236 Robert Coquereaux and Jean-Bernard Zuber, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL27/Coquereaux/coque5.html">Counting partitions by genus: a compendium of results</a>, Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.6. See p. 9. See also arXiv:2305.01100, 2023. %H A370236 Robert Cori and Gábor Hetyei, <a href="http://arxiv.org/abs/1306.4628">Counting genus one partitions and permutations</a>, arXiv:1306.4628 [math.CO], 2013. %H A370236 Robert Cori and Gábor Hetyei, <a href="https://www.elibm.org/article/10009581">Counting genus one partitions and permutations</a>, Sémin. Lothar. Comb. 70, B70e, 30 p. (2014). %H A370236 Martha Yip, <a href="https://uwspace.uwaterloo.ca/handle/10012/2933">Genus one partitions</a>, Master Thesis, University of Waterloo, 2006. %F A370236 T(n, k) = (1/6)*binomial(n, 2)*binomial(n-2, k)*binomial(n-2, k-2). %e A370236 Triangle begins (see Table 3.1 in Yip's thesis): %e A370236 1; %e A370236 5, 5; %e A370236 15, 40, 15; %e A370236 35, 175, 175, 35; %e A370236 70, 560, 1050, 560, 70; %e A370236 126, 1470, 4410, 4410, 1470, 126; %t A370236 T[n_,k_] := (1/6) Binomial[n, 2] Binomial[n-2, k] Binomial[n-2, k-2]; %t A370236 Table[T[n,k],{n,4,12},{k,2,n-2}]//Flatten (* _Stefano Spezia_, Feb 14 2024 *) %Y A370236 Row sums are A002802. %Y A370236 Cf. A000332, A297178 (genus 2). %K A370236 nonn,tabl %O A370236 4,2 %A A370236 _Robert Coquereaux_, Feb 12 2024