cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370239 The sum of divisors of n that are squares of squarefree numbers.

This page as a plain text file.
%I A370239 #11 Feb 13 2024 03:39:46
%S A370239 1,1,1,5,1,1,1,5,10,1,1,5,1,1,1,5,1,10,1,5,1,1,1,5,26,1,10,5,1,1,1,5,
%T A370239 1,1,1,50,1,1,1,5,1,1,1,5,10,1,1,5,50,26,1,5,1,10,1,5,1,1,1,5,1,1,10,
%U A370239 5,1,1,1,5,1,1,1,50,1,1,26,5,1,1,1,5,10,1,1
%N A370239 The sum of divisors of n that are squares of squarefree numbers.
%C A370239 The number of these divisors is A323308(n).
%H A370239 Amiram Eldar, <a href="/A370239/b370239.txt">Table of n, a(n) for n = 1..10000</a>
%F A370239 Multiplicative with a(p) = 1 and a(p^e) = 1 + p^2 for e >= 2.
%F A370239 a(n) >= 1, with equality if and only if n is squarefree (A005117).
%F A370239 a(n) = A071327(n) + 1 if and only if n is not in A036785.
%F A370239 Dirichlet g.f.: zeta(s)*zeta(2*s-2)/zeta(4*s-4).
%F A370239 Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = 2*zeta(3/2)/Pi^2 = 0.5293779248... .
%t A370239 f[p_, e_] := If[e == 1, 1, 1 + p^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A370239 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + f[i,1]^2));}
%Y A370239 Cf. A005117, A036785, A048250, A062503, A071327, A078434, A323308, A370240.
%K A370239 nonn,easy,mult
%O A370239 1,4
%A A370239 _Amiram Eldar_, Feb 13 2024