This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370253 #46 Feb 29 2024 11:29:33 %S A370253 0,1,1,7,45,401,4355,56127,836353,14144545,267629139,5601014255, %T A370253 128455425593,3203605245777,86317343312395,2498680706048191, %U A370253 77336483434140705,2548534969132415297,89087730603300393443,3292572900736818264015,128281460895447809211529 %N A370253 Number of deranged matchings of 2n people with partners (of either sex) such that at least one person is matched with their spouse. %H A370253 Alois P. Heinz, <a href="/A370253/b370253.txt">Table of n, a(n) for n = 0..404</a> %F A370253 a(n) = A001147(n) - A053871(n). %F A370253 a(n) = Sum_{i=0..n-1} (-1)^(n - i + 1) * binomial(n,i)*A001147(i). %F A370253 a(n) mod 2 = A057427(n). %F A370253 a(n) = Sum_{k=1..n} A055140(n,k). - _Alois P. Heinz_, Feb 14 2024 %e A370253 For n=0, there is no matching which has at least one person matched with their original partner. %e A370253 For n=1, there are only 2 people, so there is only one way to match them and it is with their original partner. %e A370253 For n=2, we have two couples, A0 with A1, and B0 with B1. Of the three ways to match them [(A0,A1),(B0,B1)], [(A0,B0),(A1,B1)] and [(A0,B1),(A1,B0)], only the first matching has a person matched up with their original partner. %p A370253 a:= proc(n) option remember; `if`(n<3, signum(n), %p A370253 (4*n-7)*a(n-1)-2*(2*n^2-10*n+11)*a(n-2)-2*(n-2)*(2*n-5)*a(n-3)) %p A370253 end: %p A370253 seq(a(n), n=0..20); # _Alois P. Heinz_, Feb 14 2024 %t A370253 a[n_] := Sum[(-1)^(n-i+1)*Binomial[n, i]*(2i-1)!!, {i, 0, n-1}]; %t A370253 Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 29 2024 *) %o A370253 (Python) %o A370253 import math %o A370253 A001147 = lambda i: math.factorial(2*i) // ( 2 ** i * math.factorial(i) ) %o A370253 A370253 = lambda n: int( sum( (-1)**(i+1) * math.comb(n,n-i) * A001147(n-i) for i in range(1,n+1) ) ) %o A370253 print( ", ".join( str(A370253(i)) for i in range(0,21) ) ) %Y A370253 Cf. A001147 (total number of matchings for 2n people). %Y A370253 Cf. A053871 (number of deranged matchings of 2n people with partners (of either sex) other than their spouse). %Y A370253 Cf. A055140, A057427. %K A370253 nonn %O A370253 0,4 %A A370253 _Sam Coutteau_, Feb 13 2024