cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370271 Coefficient of x^n in the expansion of 1/( (1-x)^3 * (1-x^2)^3 )^n.

This page as a plain text file.
%I A370271 #9 Feb 14 2024 10:48:40
%S A370271 1,3,27,246,2379,23628,239058,2450052,25351755,264270765,2771024652,
%T A370271 29194911342,308813298690,3277454178144,34883317836240,
%U A370271 372195546176496,3979793738688075,42635773396647054,457529396858568837,4917191231017846902,52917857164300253004
%N A370271 Coefficient of x^n in the expansion of 1/( (1-x)^3 * (1-x^2)^3 )^n.
%F A370271 a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(4*n-2*k-1,n-2*k).
%F A370271 The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^3 * (1-x^2)^3 ). See A368079.
%o A370271 (PARI) a(n, s=2, t=3, u=3) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));
%Y A370271 Cf. A368079.
%K A370271 nonn
%O A370271 0,2
%A A370271 _Seiichi Manyama_, Feb 13 2024