This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370280 #14 Feb 07 2025 09:26:40 %S A370280 1,3,25,234,2305,23373,241486,2527920,26720529,284555700,3048323135, %T A370280 32812937820,354619072990,3845377105794,41817926091120, %U A370280 455893204069944,4980851709418353,54521955043418925,597823622561048020,6564929893462467450,72189820135528858455 %N A370280 Coefficient of x^n in the expansion of 1/( (1-x)^2 - x )^n. %H A370280 G. C. Greubel, <a href="/A370280/b370280.txt">Table of n, a(n) for n = 0..940</a> %F A370280 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(3*n+k-1,n-k). %F A370280 The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * ((1-x)^2 - x) ). %F A370280 a(n) ~ sqrt((4 + sqrt(6))/(24*Pi*n)) * ((27 + 12*sqrt(6))/5)^n. - _Vaclav Kotesovec_, Feb 07 2025 %t A370280 A370280[n_]:= Coefficient[Series[1/(1-3*x+x^2)^n, {x,0,100}], x, n]; %t A370280 Table[A370280[n], {n,0,40}] (* _G. C. Greubel_, Feb 07 2025 *) %o A370280 (PARI) a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(3*n+k-1, n-k)); %o A370280 (Magma) %o A370280 R<x>:=PowerSeriesRing(Rationals(), 100); %o A370280 A370280:= func< n | Coefficient(R!( 1/(1-3*x+x^2)^n ), n) >; %o A370280 [A370280(n): n in [0..30]]; // _G. C. Greubel_, Feb 07 2025 %o A370280 (SageMath) %o A370280 def A370280(n): return sum(binomial(n+j-1,j)*binomial(3*n+j-1,n-j) for j in range(n+1)) %o A370280 print([A370280(n) for n in range(31)]) # _G. C. Greubel_, Feb 07 2025 %Y A370280 Cf. A069723, A249924, A370282. %K A370280 nonn %O A370280 0,2 %A A370280 _Seiichi Manyama_, Feb 13 2024