This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370291 #21 Feb 17 2024 04:04:27 %S A370291 0,1,3,3,6,6,6,6,6,10,10,10,10,10,10,10,10,10,10,10,10,10,10,15,15,15, %T A370291 15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15, %U A370291 15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,21,21,21,21,21 %N A370291 Triangular number T(n) = A000217(n) occurs C(n) = A000108(n) times. %H A370291 Paolo Xausa, <a href="/A370291/b370291.txt">Table of n, a(n) for n = 0..10000</a> %F A370291 a(n) = A000217(A072643(n)). %F A370291 Sum_{n>=1} (-1)^(n+1)/a(n) = Sum_{n>=1} (-1/2)^(n-1)/(2^n-1) = 0.86233289403022175171... . - _Amiram Eldar_, Feb 17 2024 %e A370291 Written as a triangle: %e A370291 0; %e A370291 1; %e A370291 3, 3; %e A370291 6, 6, 6, 6, 6; %e A370291 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10; %e A370291 ... %p A370291 T:= n-> n*(n+1)/2$binomial(2*n,n)/(n+1): %p A370291 seq(T(n), n=0..5); # _Alois P. Heinz_, Feb 16 2024 %t A370291 Flatten[Array[Table[PolygonalNumber[#], CatalanNumber[#]] &, 7, 0]] %Y A370291 Cf. A000108, A000217, A072643. %Y A370291 Row sums of A370221 (for n >= 1). %Y A370291 Row sums as triangle give A002457(n-1) for n>=1. %K A370291 nonn,easy,tabf %O A370291 0,3 %A A370291 _Paolo Xausa_, Feb 14 2024