This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370315 #10 Feb 20 2024 19:28:41 %S A370315 1,1,2,4,9,20,54,146,436,1372,4577,15971,58376,221876,876012,3583099, %T A370315 15159817,66248609,298678064,1387677971,6637246978,32648574416, %U A370315 165002122350,855937433641,4553114299140,24813471826280,138417885372373,789683693019999,4603838061688077 %N A370315 Number of unlabeled simple graphs with n possibly isolated vertices and up to n edges. %H A370315 Andrew Howroyd, <a href="/A370315/b370315.txt">Table of n, a(n) for n = 0..50</a> %F A370315 Sum of first n+1 terms of row n of A008406. %e A370315 The a(1) = 1 through a(4) = 9 graph edge sets: %e A370315 {} {} {} {} %e A370315 {12} {12} {12} %e A370315 {12-13} {12-13} %e A370315 {12-13-23} {12-34} %e A370315 {12-13-14} %e A370315 {12-13-23} %e A370315 {12-13-24} %e A370315 {12-13-14-23} %e A370315 {12-13-24-34} %t A370315 brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; %t A370315 Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]]],{n,0,5}] %o A370315 (PARI) a(n) = if(n<=1, n>=0, polcoef(G(n, O(x*x^n))/(1-x),n)) \\ G(n) defined in A008406. - _Andrew Howroyd_, Feb 20 2024 %Y A370315 The case of exactly n edges is A001434, covering A006649. %Y A370315 The connected covering case is A005703, labeled A129271. %Y A370315 Partial row sums of A008406, covering A370167. %Y A370315 The labeled version is A369192. %Y A370315 The version with loops is A370168, labeled A066383. %Y A370315 The covering case is A370316, labeled A369191. %Y A370315 A006125 counts graphs, unlabeled A000088. %Y A370315 A006129 counts covering graphs, unlabeled A002494. %Y A370315 Cf. A000666, A322661, A322700, A369194, A369196, A369197, A369199, A370169. %K A370315 nonn %O A370315 0,3 %A A370315 _Gus Wiseman_, Feb 18 2024