cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370319 Triangle read by rows where T(n,k) is the number of labeled graphs with n vertices and k non-isolated vertices.

This page as a plain text file.
%I A370319 #11 Feb 28 2024 06:30:18
%S A370319 1,1,0,1,0,1,1,0,3,4,1,0,6,16,41,1,0,10,40,205,768,1,0,15,80,615,4608,
%T A370319 27449,1,0,21,140,1435,16128,192143,1887284,1,0,28,224,2870,43008,
%U A370319 768572,15098272,252522481,1,0,36,336,5166,96768,2305716,67942224,2272702329,66376424160
%N A370319 Triangle read by rows where T(n,k) is the number of labeled graphs with n vertices and k non-isolated vertices.
%F A370319 T(n,k) = binomial(n,k) * A006129(k).
%F A370319 T(n,n-1) = (n-1) * A006129(n-1).
%F A370319 T(n,k) = A198261(n, n-k). - _Andrew Howroyd_, Feb 26 2024
%e A370319 Triangle begins:
%e A370319      1
%e A370319      1     0
%e A370319      1     0     1
%e A370319      1     0     3     4
%e A370319      1     0     6    16    41
%e A370319      1     0    10    40   205   768
%e A370319      1     0    15    80   615  4608 27449
%e A370319 Row n = 3 counts the following edge sets:
%e A370319   {}  .  {{1,2}}  {{1,2},{1,3}}
%e A370319          {{1,3}}  {{1,2},{2,3}}
%e A370319          {{2,3}}  {{1,3},{2,3}}
%e A370319                   {{1,2},{1,3},{2,3}}
%t A370319 Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[Union@@#]==k&]],{n,0,5},{k,0,n}]
%t A370319 Flatten@Table[Binomial[n,k]*Sum[(-1)^(k-m) Binomial[k,m] 2^Binomial[m,2],{m,0,k}],{n,0,10},{k,0,n}] (* _Giorgos Kalogeropoulos_, Feb 25 2024 *)
%Y A370319 Row sums are A006125, unlabeled A000088.
%Y A370319 Column k = n is A006129, unlabeled A002494.
%Y A370319 Mirror of A198261, unlabeled A217653.
%Y A370319 The unlabeled version is the partial subsequences of A002494.
%Y A370319 Cf. A001187, A003465, A006126, A116508, A143543, A287689, A367862.
%K A370319 nonn,tabl
%O A370319 0,9
%A A370319 _Gus Wiseman_, Feb 18 2024
%E A370319 More terms from _Giorgos Kalogeropoulos_, Feb 25 2024