cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370322 Least prime p such that exactly n distinct primes can be formed using one or more of the digits of p.

Original entry on oeis.org

2, 29, 13, 37, 107, 127, 113, 167, 1033, 179, 137, 1063, 1217, 1013, 1399, 1249, 1163, 1123, 1307, 1193, 1097, 10477, 11351, 1439, 1279, 1237, 3947, 11353, 1367, 10343, 1973, 10271, 10079, 10831, 10321, 10243, 10253, 10247, 13093, 10267, 10163, 10429, 12487, 11437, 10357, 10337
Offset: 1

Views

Author

Robert G. Wilson v, Mar 22 2024

Keywords

Comments

Inspired by A076449.
a(n) >= A076449(n). As an example, a(727) is 3569887, but A076449(727) is 3567889, a difference of 1998. Notice that they possess identical digits.
a(n) = A076449(n) at n = 1, 3, 4, 5, 6, 7, 8, 10, 11, 14, 18, 19, 25, 26, 29, 33, 38, 40, 45, 46, ..., .
a(n) <> A076449(n) but they have identical digits at n = 12, 13, 17, 19, 20, 21, 24, 27, 31, 32, 34, 35, 36, 37, 39, ..., .
a(n) <> A076449(n) and they do not have identical digits at n = 2, 9, 15, 16, 22, 23, 28, 30, ..., .

Examples

			a(0) would be 1, but 1 is not a prime (A075053);
a(1) is 2, the first prime;
a(2) is 29 since {2 & 29} are primes but {9 & 92} are not;
a(3) is 13 since {3, 13 & 31} are primes, but 1 is not;
a(4) is 37 since all the permutations are prime, i.e.: {3, 7, 37 & 73};
a(5) is 107 since {7, 17, 71, 107 & 701} are primes; etc.
		

Crossrefs

Programs