cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A376936 Powerful numbers divisible by cubes of 2 distinct primes.

Original entry on oeis.org

216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5400, 5488, 5832, 6912, 7776, 8000, 9000, 9261, 10000, 10125, 10368, 10584, 10648, 10800, 10976, 11664, 13500, 13824, 15552, 16000, 16200, 16875, 17496, 17576, 18000
Offset: 1

Views

Author

Michael De Vlieger, Oct 16 2024

Keywords

Comments

Numbers m with coreful divisors d, m/d such that neither d | m/d nor m/d | d, i.e., numbers m such that there exists a divisor pair (d, m/d) such that rad(d) = rad(m/d) but gcd(d, m/d) > 1 is neither d nor m/d, where rad = A007947. Divisors in each pair must be dissimilar and each in A126706.
Proper subset of A320966.
Contains A372695, A177493, and A162142. Does not contain A085986.

Examples

			216 is in the sequence since rad(12) | rad(18), but 12 does not divide 18 and 18 does not divide 12.
432 is a term since rad(18) | rad(24), but 18 does not divide 24 and 24 does not divide 18.
Table of coreful divisors d, a(n)/d such that neither d | a(n)/d nor a(n)/d | d for select a(n)
   n |   a(n)   divisor pairs d X a(n)/d
  ---------------------------------------------------------------------------
   1 |   216:   12 X 18;
   2 |   432:   18 X 24;
   3 |   648:   12 X 54;
   4 |   864:   24 X 36, 18 X 48;
   5 |  1000:   20 X 50;
   6 |  1296:   24 X 54;
   7 |  1728:   18 X 96, 36 X 48;
   8 |  1944:   12 X 162, 36 X 54;
   9 |  2000:   40 X 50;
  10 |  2592:   24 X 108, 48 X 54;
  11 |  2744:   28 X 98;
  12 |  3375:   45 X 75;
  13 |  3456:   18 X 192, 36 X 96, 48 X 72;
  22 |  7776:   24 X 324, 48 X 162, 54 X 144, 72 X 108;
  58 | 31104:   48 X 648, 54 X 576, 96 X 324, 108 X 288, 144 X 216, 162 X 192
		

Crossrefs

Programs

  • Mathematica
    Union@ Select[
      Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[20000],
      Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - (15/Pi^2) * (1 + Sum_{prime} 1/((p-1)*(p^2+1))) = 0.021194288968234037106579437374641326044... . - Amiram Eldar, Nov 08 2024

A379592 Number of coreful divisor pairs (d, k/d), d | k, d < k/d, such that only one divisor divides the other, where k is in A320966.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 1, 4, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 4, 1, 3, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 2, 2, 1, 5, 3, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 3, 1, 1, 2, 4, 1, 2, 5, 1, 1, 1, 4, 1, 1, 2, 5, 1, 1
Offset: 1

Views

Author

Michael De Vlieger, Dec 28 2024

Keywords

Comments

Number of ways to write k = A320966(n) as a product of numbers i and j, i < j, such that rad(i) = rad(j) = rad(k), and either i | j or j | i, where rad = A007947 is the squarefree kernel.
Analogous to A370329, where the reference domain is A001694 instead of A320966.

Examples

			Let s(n) = A320966(n).
a(1) = 1 since s(1) = 8 = 2*4.
a(2) = 1 since s(2) = 16 = 2*8.
a(3) = 1 since s(3) = 27 = 3*9.
a(4) = 2 since s(4) = 32 = 2*16 = 4*8.
a(10) = 3 since s(10) = 128 = 2*64 = 4*32 = 8*16.
a(23) = 4 since s(23) = 512 = 2*256 = 4*128 = 8*64 = 16*32.
a(181) = 7 since s(181) = 20736 = 6*3456 = 12*1728 = 18*1152 = 24*864 = 36*576 = 48*432 = 72*288, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 5400; rad[x_] := Times @@ FactorInteger[x][[All, 1]];
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}],
      Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] > 0 &];
    Table[k = s[[n]];
      Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
        _?(And[rad[#1] == rad[#2],
           Xor[Divisible[#2, #1],
               Divisible[#1, #2]]] & @@ # &)], {n, Length[s]}]

A370328 The number of powerful divisors of the powerful numbers.

Original entry on oeis.org

1, 2, 3, 2, 4, 2, 3, 5, 4, 2, 6, 6, 4, 4, 6, 2, 3, 7, 8, 2, 4, 6, 9, 4, 5, 8, 10, 2, 8, 3, 2, 6, 8, 12, 4, 4, 6, 9, 2, 12, 4, 12, 6, 4, 6, 8, 10, 2, 15, 8, 2, 6, 10, 9, 10, 4, 6, 14, 4, 4, 16, 6, 3, 6, 2, 6, 4, 4, 10, 12, 2, 18, 8, 12, 2, 8, 15, 12, 8, 11, 4, 7
Offset: 1

Views

Author

Amiram Eldar, Feb 15 2024

Keywords

Comments

The product of the exponents of the prime factorization of the powerful numbers.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[n == 1 || Min[e] > 1, Times @@ e, Nothing]]; Array[f, 2500]
  • PARI
    lista(kmax) = {my(e); for(k = 1, kmax, e = factor(k)[,2]; if(k == 1 || vecmin(e) > 1, print1(vecprod(e), ", ")));}

Formula

a(n) = A005361(A001694(n)).
a(n) = A000005(A306458(n)).

A379593 Numbers that set records in A379592.

Original entry on oeis.org

8, 32, 128, 512, 2048, 8192, 20736, 41472, 82944, 165888, 186624, 373248, 746496, 1492992, 2985984, 5971968, 6718464, 11943936, 23887872, 26873856, 53747712, 107495424, 214990848, 241864704, 429981696, 859963392, 967458816, 1719926784, 3439853568, 3869835264, 7464960000
Offset: 1

Views

Author

Michael De Vlieger, Dec 30 2024

Keywords

Comments

Proper subset of the intersection of A025487 and A320966.
Let k be a powerful number (in A001694) and let coreful d | k be such that k/d is also coreful, i.e., rad(d) = rad(d/k) = rad(k), where rad = A007947 is the squarefree kernel. Suppose d < d/k. Then coreful d may either divide k/d or not (indeed, if d/k < d, k/d may either divide d or not).
Then we have either d | k/d (the cardinality of such divisors is A379592(n) for k = A320966(n)) or d does not divide k/d (the cardinality of such divisors is A379552(n) for k = A376936(n)). (The case d = k/d, both certainly coreful, of course pertains to perfect squares k in A000290.)
Coreful divisors are counted by A361430 across natural numbers, and A370329 across powerful numbers A001694. Numbers that set records in A361430 (and A370329) are in A005934 (highly powerful numbers), with records in A036965.

Examples

			Let b(n) = A379592(n).
Table showing exponents of prime power factors of a(n) for n = 1..12. Example: a(7) = 20736 = 2^8*3^4, so "8.4" appears in the "exp." column.
   n      a(n)  exp. b(a(n))
  --------------------------
   1        8    3       1   2*4
   2       32    5       2   2*16 = 4*8
   3      128    7       3   2*64 = 4*32 = 8*16
   4      512    9       4   2*256 = 4*128 = 8*64 = 16*32
   5     2048   11       5   2*1024 = 4*512 = 8*256 = 16*128 = 32=64
   6     8192   13       6   2*4096 = 4*2048 = 8*1024 = 16*512 = 32*256 = 64*128
   7    20736    8.4     7
   8    41472    9.4     8
   9    82944   10.4     9
  10   165888   11.4    10
  11   186624    8.6    11
  12   373248    9.6    12
		

Crossrefs

Programs

  • Mathematica
    (* Load function f at A025487 *)
    r = 0; s = Union@ Flatten@ f[10]; nn = Length[s];
    rad[x_] := Times @@ FactorInteger[x][[All, 1]];
      Transpose@ Reap[Monitor[
        Do[k = s[[i]];
          If[# > r, r = #; Sow[k]] &@
            Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
              _?(And[rad[#1] == rad[#2],
                Xor[Divisible[#2, #1],
                    Divisible[#1, #2]]] & @@ # &)], {i, nn}], {i, nn}] ][[-1, 1]]
Showing 1-4 of 4 results.