cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370333 Expansion of e.g.f. T(x,k) satisfying T(x,k) = (1/k) * sin( k*x*cos(x*sqrt(1 - k^2*T(x,k)^2)) ), as a triangle read by rows.

This page as a plain text file.
%I A370333 #9 Feb 21 2024 10:12:56
%S A370333 1,-3,-1,5,90,1,-7,-3675,-2205,-1,9,107604,532350,46116,1,-11,
%T A370333 -2436885,-74042430,-52887450,-812295,-1,13,46444398,7663602375,
%U A370333 24609789204,4257556875,12666654,1,-15,-785872815,-643910782515,-7510986678195,-5841878527485,-292686719325,-181355265,-1
%N A370333 Expansion of e.g.f. T(x,k) satisfying T(x,k) = (1/k) * sin( k*x*cos(x*sqrt(1 - k^2*T(x,k)^2)) ), as a triangle read by rows.
%C A370333 Unsigned row sums equal A007106.
%C A370333 Signed version of triangle A370433.
%C A370333 A row reversal of triangle A370331.
%F A370333 E.g.f.: T(x,k) = Sum_{n>=0} Sum_{j=0..n} a(n,j) * x^(2*n+1)*k^(2*j)/(2*n+1)! along with the related functions C = C(x,k), S = S(x,k), D = D(x,k), and T = T(x,k) satisfy the following formulas.
%F A370333 Definition.
%F A370333 (1.a) (C + i*S) = exp(i*x*D).
%F A370333 (1.b) (D + i*k*T) = exp(i*k*x*C).
%F A370333 (2.a) C^2 + S^2 = 1.
%F A370333 (2.b) D^2 + k^2*T^2 = 1.
%F A370333 Circular functions.
%F A370333 (3.a) C = cos(x*D).
%F A370333 (3.b) S = sin(x*D).
%F A370333 (3.c) D = cos(k*x*C).
%F A370333 (3.d) T = (1/k) * sin(k*x*C).
%F A370333 (4.a) C = cos( x*cos(k*x*C) ).
%F A370333 (4.b) S = sin( x*cos(k*x*sqrt(1 - S^2)) ).
%F A370333 (4.c) D = cos( k*x*cos(x*D) ).
%F A370333 (4.d) T = (1/k) * sin( k*x*cos(x*sqrt(1 - k^2*T^2)) ).
%F A370333 (5.a) (C*D - k*S*T) = cos(x*D + k*x*C).
%F A370333 (5.b) (S*D + k*C*T) = sin(x*D + k*x*C).
%F A370333 Transformations.
%F A370333 (6.a) C(x, 1/k) = D(x/k, k).
%F A370333 (6.b) D(x, 1/k) = C(x/k, k).
%F A370333 (6.c) S(x, 1/k) = k * T(x/k, k).
%F A370333 (6.d) T(x, 1/k) = k * S(x/k, k).
%F A370333 (6.e) D(x, k) = C(k*x, 1/k).
%F A370333 (6.f) C(x, k) = D(k*x, 1/k).
%F A370333 (6.g) T(x, k) = (1/k) * S(k*x, 1/k).
%F A370333 (6.h) S(x, k) = (1/k) * T(k*x, 1/k).
%F A370333 Integrals.
%F A370333 (7.a) C = 1 - Integral S*D + x*S*D' dx.
%F A370333 (7.b) S = Integral C*D + x*C*D' dx.
%F A370333 (7.c) D = 1 - k^2 * Integral T*C + x*T*C' dx.
%F A370333 (7.d) T = Integral D*C + x*D*C' dx.
%F A370333 Derivatives (d/dx).
%F A370333 (8.a) C*C' = -S*S'.
%F A370333 (8.b) D*D' = -k^2*T*T'.
%F A370333 (9.a) C' = -S * (D + x*D').
%F A370333 (9.b) S' = C * (D + x*D').
%F A370333 (9.c) D' = -k^2 * T * (C + x*C').
%F A370333 (9.d) T' = D * (C + x*C').
%F A370333 (10.a) C' = -S * (D - k^2*x*T*C) / (1 - k^2*x^2*S*T).
%F A370333 (10.b) S' = C * (D - k^2*x*T*C) / (1 - k^2*x^2*S*T).
%F A370333 (10.c) D' = -k^2 * T * (C - x*S*D) / (1 - k^2*x^2*S*T).
%F A370333 (10.d) T' = D * (C - x*S*D) / (1 - k^2*x^2*S*T).
%F A370333 (11.a) (C + x*C') = (C - x*S*D) / (1 - k^2*x^2*S*T).
%F A370333 (11.b) (D + x*D') = (D - k^2*x*T*C) / (1 - k^2*x^2*S*T).
%e A370333 E.g.f.: T(x,k) = x - (3 + k^2)*x^3/3! + (5 + 90*k^2 + k^4)*x^5/5! - (7 + 3675*k^2 + 2205*k^4 + k^6)*x^7/7! + (9 + 107604*k^2 + 532350*k^4 + 46116*k^6 + k^8)*x^9/9! - (11 + 2436885*k^2 + 74042430*k^4 + 52887450*k^6 + 812295*k^8 + k^10)*x^11/11! + (13 + 46444398*k^2 + 7663602375*k^4 + 24609789204*k^6 + 4257556875*k^8 + 12666654*k^10 + k^12)*x^13/13! + ...
%e A370333 where T(x,k) = (1/k) * sin( k*x*cos(x*sqrt(1 - k^2*T(x,k)^2)) ).
%e A370333 This triangle of coefficients a(n,j) of x^(2*n+1)*k^(2*j)/(2*n+1)! in T(x,k) begins
%e A370333  1;
%e A370333  -3, -1;
%e A370333  5, 90, 1;
%e A370333  -7, -3675, -2205, -1;
%e A370333  9, 107604, 532350, 46116, 1;
%e A370333  -11, -2436885, -74042430, -52887450, -812295, -1;
%e A370333  13, 46444398, 7663602375, 24609789204, 4257556875, 12666654, 1;
%e A370333  -15, -785872815, -643910782515, -7510986678195, -5841878527485, -292686719325, -181355265, -1;
%e A370333  17, 12196578600, 45911000082220, 1766457334617976, 4451226370197750, 1124109212938712, 17658076954700, 2439315720, 1; ...
%o A370333 (PARI) {a(n, j) = my(C=1, S=x, D=1, T=x, Ox=x*O(x^(2*n+1)));
%o A370333 for(i=1, 2*n+1,
%o A370333 C = cos( x*cos(k*x*C +Ox) );
%o A370333 S = sin( x*cos(k*x*sqrt(1 - S^2 +Ox)) );
%o A370333 D = cos( k*x*cos(x*D +Ox));
%o A370333 T = (1/k)*sin( k*x*cos(x*sqrt(1 - k^2*T^2 +Ox))););
%o A370333 (2*n+1)! *polcoeff(polcoeff(T, 2*n+1, x), 2*j, k)}
%o A370333 for(n=0, 10, for(k=0, n, print1( a(n, k), ", ")); print(""))
%Y A370333 Cf. A370330 (C), A370331 (S), A370332 (D).
%Y A370333 Cf. A370433.
%K A370333 sign,tabl
%O A370333 0,2
%A A370333 _Paul D. Hanna_, Feb 19 2024