This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370335 #5 Feb 24 2024 11:04:18 %S A370335 1,15,0,275,0,0,5375,0,0,0,106875,0,0,0,0,2134375,0,0,0,0,0,42671875, %T A370335 0,0,0,0,0,0,853359375,0,0,0,0,0,0,0,17066796875,0,0,0,0,0,0,0,0, %U A370335 341333984375,0,0,0,0,0,0,0,0,0,6826669921875,0,0,0,0,0,0,0,0,0,0,136533349609375 %N A370335 Expansion of Sum_{n>=0} 5^n * (2*4^n + 1)/3 * x^(n*(n+1)/2). %C A370335 Equals the self-convolution cube of A370336. %e A370335 G.f.: A(x) = 1 + 15*x + 275*x^3 + 5375*x^6 + 106875*x^10 + 2134375*x^15 + 42671875*x^21 + 853359375*x^28 + 17066796875*x^36 + 341333984375*x^45 + ... %e A370335 RELATED SERIES. %e A370335 The cube root of the g.f. A(x) is an integer series starting as %e A370335 A(x)^(1/3) = 1 + 5*x - 25*x^2 + 300*x^3 - 3000*x^4 + 34375*x^5 - 426750*x^6 + 5539375*x^7 - 73968750*x^8 + 1010175000*x^9 + ... + A370336(n)*x^n + ... %o A370335 (PARI) {a(n) = my(A); %o A370335 A = sum(m=0, sqrtint(2*n+1), 5^m*(2*4^m + 1)/3 * x^(m*(m+1)/2) +x*O(x^n)); %o A370335 polcoeff(H=A, n)} %o A370335 for(n=0, 66, print1(a(n), ", ")) %Y A370335 Cf. A370015. %K A370335 nonn %O A370335 0,2 %A A370335 _Paul D. Hanna_, Feb 23 2024