This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370347 #19 Feb 17 2024 14:44:58 %S A370347 1,0,1,9,0,1,252,27,0,1,14337,1008,54,0,1,1327104,71685,2520,90,0,1, %T A370347 182407545,7962624,215055,5040,135,0,1,34906943196,1276852815, %U A370347 27869184,501795,8820,189,0,1,8877242235393,279255545568,5107411260,74317824,1003590,14112,252,0,1 %N A370347 Number T(n,k) of partitions of [3n] into n sets of size 3 having exactly k sets {3j-2,3j-1,3j} (1<=j<=n); triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A370347 Alois P. Heinz, <a href="/A370347/b370347.txt">Rows n = 0..140, flattened</a> %H A370347 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A370347 T(n,k) = binomial(n,k) * A370357(n-k). %F A370347 Sum_{k=1..n} T(n,k) = A370358(n). %F A370347 T(n,k) mod 9 = A023531(n,k). %e A370347 T(2,0) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234. %e A370347 T(2,2) = 1: 123|456. %e A370347 Triangle T(n,k) begins: %e A370347 1; %e A370347 0, 1; %e A370347 9, 0, 1; %e A370347 252, 27, 0, 1; %e A370347 14337, 1008, 54, 0, 1; %e A370347 1327104, 71685, 2520, 90, 0, 1; %e A370347 182407545, 7962624, 215055, 5040, 135, 0, 1; %e A370347 34906943196, 1276852815, 27869184, 501795, 8820, 189, 0, 1; %e A370347 ... %p A370347 b:= proc(n) option remember; `if`(n<3, [1, 0, 9][n+1], %p A370347 9*(n*(n-1)/2*b(n-1)+(n-1)^2*b(n-2)+(n-1)*(n-2)/2*b(n-3))) %p A370347 end: %p A370347 T:= (n, k)-> b(n-k)*binomial(n, k): %p A370347 seq(seq(T(n, k), k=0..n), n=0..10); %Y A370347 Row sums give A025035. %Y A370347 Column k=0 gives A370357. %Y A370347 T(n+1,n-1) gives A027468. %Y A370347 T(n+2,n-1) gives 252*A000292. %Y A370347 Cf. A023531, A055140, A370358. %K A370347 nonn,tabl %O A370347 0,4 %A A370347 _Alois P. Heinz_, Feb 15 2024