A370360 Number of labeled semisimple rings with n elements.
1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 24409921536000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000
Offset: 1
Keywords
Examples
For n=4, we have two possible rings: F_4 and F_2 X F_2. We use the notation F_q to denote the finite field with q elements. To compute a(4) we need to know how many ring automorphisms F_4 and F_2 X F_2 admit. For F_4, we have that Aut(F_4) is generated by the Frobenius morphism, hence we have 2 automorphisms. For F_2 X F_2, the only nontrivial automorphism is exchanging the two coordinates, hence we also have 2 automorphisms. Hence: a(4) = 24/2 + 24/2 = 24. We can compute a(2^k) for some small values of k: a(4) = 4! = 24, a(8) = 8!, a(16) = 16! + 16!/6, a(32) = 32! + 32!/6, a(64) = 64! + 64!/12 + 64!/12, a(128) = 128! + 128!/36 + 128!/18 + 128!/12, ...
Links
Formula
If n is squarefree then we have a(n) = n!. More precisely, a(n) = n! if and only if the only 4th power that divides n is 1. In particular, n=16 is the smallest n such that a(n) is different from n!.
If n and m are relatively prime, then a(n*m) = (n*m)!*a(n)*a(m)/(n!*m!).
Comments