This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370366 #21 Feb 17 2024 17:30:57 %S A370366 1,1,0,1,0,0,1,0,0,0,1,0,2,0,0,1,0,9,8,0,0,1,0,34,252,60,0,0,1,0,125, %T A370366 5672,14337,544,0,0,1,0,461,125750,2604732,1327104,6040,0,0,1,0,1715, %U A370366 2857472,488360625,2533087904,182407545,79008,0,0 %N A370366 Number A(n,k) of partitions of [k*n] into n sets of size k having no set of consecutive numbers whose maximum (if k>0) is a multiple of k; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A370366 Alois P. Heinz, <a href="/A370366/b370366.txt">Antidiagonals n = 0..54, flattened</a> %H A370366 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A370366 A(n,k) = A060540(n,k) - A370363(n,k) for n,k >= 1. %e A370366 A(2,3) = 9: 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234. %e A370366 Square array A(n,k) begins: %e A370366 1, 1, 1, 1, 1, 1, ... %e A370366 0, 0, 0, 0, 0, 0, ... %e A370366 0, 0, 2, 9, 34, 125, ... %e A370366 0, 0, 8, 252, 5672, 125750, ... %e A370366 0, 0, 60, 14337, 2604732, 488360625, ... %e A370366 0, 0, 544, 1327104, 2533087904, 5192229797500, ... %p A370366 A:= proc(n, k) `if`(k=0,`if`(n=0, 1, 0), add( %p A370366 (-1)^(n-j)*binomial(n, j)*(k*j)!/(j!*k!^j), j=0..n)) %p A370366 end: %p A370366 seq(seq(A(n, d-n), n=0..d), d=0..10); %Y A370366 Columns k=0+1,2-3 give: A000007, A053871, A370357. %Y A370366 Rows n=0-2 give: A000012, A000004, A010763(n-1) for k>0. %Y A370366 Main diagonal gives A370367. %Y A370366 Antidiagonal sums give A370368. %Y A370366 Cf. A060540, A370363. %K A370366 nonn,tabl %O A370366 0,13 %A A370366 _Alois P. Heinz_, Feb 16 2024