cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370380 Array read by downward antidiagonals: A(n,k) = (k+2)*A(n-1,k+1) + Sum_{j=0..k} A(n-1,j) with A(0,k) = 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 3, 1, 5, 13, 1, 7, 29, 71, 1, 9, 51, 195, 461, 1, 11, 79, 409, 1493, 3447, 1, 13, 113, 737, 3623, 12823, 29093, 1, 15, 153, 1203, 7427, 35285, 122125, 273343, 1, 17, 199, 1831, 13601, 81009, 375591, 1277991, 2829325, 1, 19, 251, 2645, 22961, 164371, 954419, 4344485, 14584789, 31998903
Offset: 0

Views

Author

Mikhail Kurkov, Feb 17 2024

Keywords

Examples

			Array begins:
===========================================================
n\k|     0      1      2      3       4       5       6 ...
---+-------------------------------------------------------
0  |     1      1      1      1       1       1       1 ...
1  |     3      5      7      9      11      13      15 ...
2  |    13     29     51     79     113     153     199 ...
3  |    71    195    409    737    1203    1831    2645 ...
4  |   461   1493   3623   7427   13601   22961   36443 ...
5  |  3447  12823  35285  81009  164371  304667  526833 ...
6  | 29093 122125 375591 954419 2124937 4289433 8025755 ...
  ...
		

Crossrefs

Row 2 appears to be essentially A144391. - Joerg Arndt, Feb 17 2024
Cf. A003319.

Programs

  • PARI
    A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, 1)); r[1] = v[1..n+1];
    for(i=1, m, v=vector(#v-1, k, (k+1)*v[k+1] + sum(j=1, k, v[j])); r[1+i] = v[1..n+1]); Mat(r)}
    { A(6) }

Formula

Conjecture: A(n,0) = A003319(n+2). - Mikhail Kurkov, Oct 27 2024
A(n,k) = A(n,k-1) - k*A(n-1,k) + (k+2)*A(n-1,k+1) with A(n,0) = A(n-1,0) + 2*A(n-1,1), A(0,k) = 1. - Mikhail Kurkov, Nov 23 2024