cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370381 Array read by downward antidiagonals: A(n,k) = Sum_{j=0..k+1} binomial(k+2, j+1)*A(n-1,j) with A(0,k) = 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 3, 1, 7, 13, 1, 15, 45, 71, 1, 31, 145, 319, 461, 1, 63, 453, 1355, 2525, 3447, 1, 127, 1393, 5623, 13241, 22199, 29093, 1, 255, 4245, 23051, 68261, 138219, 215157, 273343, 1, 511, 12865, 93799, 348761, 850031, 1549889, 2282639, 2829325, 1, 1023, 38853, 379835, 1771925, 5193867, 11065437, 18672307, 26340253, 31998903
Offset: 0

Views

Author

Mikhail Kurkov, Feb 17 2024

Keywords

Examples

			Array begins:
==================================================
n\k|    0     1      2      3       4        5 ...
---+----------------------------------------------
0  |    1     1      1      1       1        1 ...
1  |    3     7     15     31      63      127 ...
2  |   13    45    145    453    1393     4245 ...
3  |   71   319   1355   5623   23051    93799 ...
4  |  461  2525  13241  68261  348761  1771925 ...
5  | 3447 22199 138219 850031 5193867 31604159 ...
  ...
		

Crossrefs

Cf. A003319.

Programs

  • PARI
    A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, 1)); r[1] = v[1..n+1];
    for(i=1, m, v=vector(#v-1, k, sum(j=1, k+1, binomial(k+1, j)*v[j])); r[1+i] = v[1..n+1]); Mat(r)}
    { A(5) }

Formula

Conjecture: A(n,0) = A003319(n+2). - Mikhail Kurkov, Oct 27 2024