This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370396 #12 Mar 13 2024 12:13:49 %S A370396 1,3,13,63,347,2061,13219,89877,646009,4866339,38305573,313535631, %T A370396 2661927255,23367856281,211680786375,1974332847177,18929186519705, %U A370396 186249976522155,1878195826349765,19386702579997095,204603867473735387,2205553917952342605,24261717301000314867 %N A370396 Number of nonnegative integer matrices with sum of entries equal to 2*n or 2*n+1, no zero rows or columns, which are symmetric about both diagonals. %C A370396 a(n) is the number of semistandard Young tableaux of size 2*n or 2*n+1 with consecutive entries (i.e., if i is in T, and 1<=j<=i, then j is in T) which are invariant under Schützenberger involution. %e A370396 The a(2) = 13 matrices with sum of entries equal to 4: %e A370396 [4] %e A370396 . %e A370396 [2 0] [1 1] [0 2] %e A370396 [0 2] [1 1] [2 0] %e A370396 . %e A370396 [1 0 0] [0 0 1] [0 1 0] %e A370396 [0 2 0] [0 2 0] [1 0 1] %e A370396 [0 0 1] [1 0 0] [0 1 0] %e A370396 . %e A370396 [1 0 0 0] [0 0 0 1] [1 0 0 0] %e A370396 [0 1 0 0] [0 1 0 0] [0 0 1 0] %e A370396 [0 0 1 0] [0 0 1 0] [0 1 0 0] %e A370396 [0 0 0 1] [1 0 0 0] [0 0 0 1] %e A370396 . %e A370396 [0 0 0 1] [0 1 0 0] [0 0 1 0] %e A370396 [0 0 1 0] [1 0 0 0] [0 0 0 1] %e A370396 [0 1 0 0] [0 0 0 1] [1 0 0 0] %e A370396 [1 0 0 0] [0 0 1 0] [0 1 0 0] %o A370396 (SageMath) nmax = 20 %o A370396 R.<x> = PowerSeriesRing(QQ) %o A370396 S = [R(1)] %o A370396 for k in range(nmax+1): %o A370396 S.append(sum(S[i]*binomial(k,i)*x^(2*(k-i)) for i in range(k+1))/(1-x^2+O(x^(nmax+1)))^k/(1-x+O(x^(nmax+1)))-S[k]) %o A370396 print(sum(1/(1-x+O(x^(nmax+1)))/(1-x^2+O(x^(nmax+1)))^n*sum(x^(2*(n-k))*factorial(n)/factorial(n-k)/factorial(k-i)/factorial(k-j)/factorial(i+j-k)*S[i]*S[j] for k in range(n+1) for i in range(k+1) for j in range(k-i,k+1)) for n in range(nmax+1)).coefficients()) %Y A370396 Cf. A135401. %K A370396 nonn %O A370396 0,2 %A A370396 _Ludovic Schwob_, Feb 17 2024