This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370411 #42 Apr 30 2024 08:28:11 %S A370411 1,75,1,16875,24,1,221484375,34560,18,1,116279296875,116121600,58320, %T A370411 39,1,12950606689453125,780337152000,440899200,296595,51,1, %U A370411 4861333986053466796875,8899589151129600,6666395904000,68420017575,663255,63,1,677114376628875732421875 %N A370411 Square array T(n, k) = denominator( zeta_r(2*n) * sqrt(A003658(k + 2)) / Pi^(4*n) ), read by antidiagonals, where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2). %H A370411 <a href="/index/Z#zeta_function">Index entries for zeta function</a>. %F A370411 T(n, k) = denominator( 2^(n*4) * n^2 * zeta_r(1 - 2*n) /((2*n)!^2 * A003658(k + 2)^(2*n - 1)) ), where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2). %F A370411 T(n, 0) = denominator((5^(-2*n)*(zeta(2*n, 1/5) - zeta(2*n, 2/5) - zeta(2*n, 3/5) + zeta(2*n, 4/5) ))*zeta(2*n)*sqrt(5)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according A080891. %F A370411 T(n, 1) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000464(n+1) /((2*n)!^2 * 8^(2*n - 1)) ). %F A370411 T(n, 2) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000191(n+1) /((2*n)!^2 * 12^(2*n - 1)) ). %F A370411 T(n, 3) = denominator((13^(-2*n)*(zeta(2*n, 1/13) - zeta(2*n, 2/13) + zeta(2*n, 3/13) + zeta(2*n, 4/13) - zeta(2*n, 5/13) - zeta(2*n, 6/13) - zeta(2*n, 7/13) - zeta(2*n, 8/13) + zeta(2*n, 9/13) + zeta(2*n, 10/13) - zeta(2*n, 11/13) + zeta(2*n, 12/13) ))*zeta(2*n)*sqrt(13)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according the Dirichlet character X13(12,.). %F A370411 T(n, 6) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000411(n+1) /((2*n)!^2 * 24^(2*n - 1)) ). %F A370411 T(n, 7) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064072(n+1) /((2*n)!^2 * 28^(2*n - 1)) ). %F A370411 T(n, 11) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064075(n+1) /((2*n)!^2 * 40^(2*n - 1)) ). %F A370411 T(n, k) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * d(A003658(k+2)/4, n+1) /((2*n)!^2 * 40^(2*n - 1)) ), for all k where A003658(k+2) is a multiple of four (The discriminant of the quadratic field is from 4*A230375). d() are the generalized tangent numbers. %F A370411 T(0, k) = 1, because for a real quadratic number field the discriminant D is positive, hence the Kronecker symbol (D/-1) = 1. This means the associated Dirichlet L-function will be zero at s = 0 inside the expression zeta_r(s) = zeta(s)*L(s, x). %e A370411 The array begins: %e A370411 1, 1, 1, 1, 1 %e A370411 75, 24, 18, 39, 51 %e A370411 16875, 34560, 58320, 296595, 663255 %e A370411 221484375, 116121600, 440899200, 68420017575, 20126472975 %e A370411 116279296875, 780337152000, 6666395904000, 93393323989875, 10382542981248375 %o A370411 (PARI) %o A370411 \p 700 %o A370411 row(n) = {v=[]; for(k=2, 30, if(isfundamental(k), v=concat(v, denominator(bestappr(sqrt(k)*lfun(x^2-(k%2)*x-floor(k/4), 2*n)/Pi^(4*n)))))); v} %o A370411 z(n,d) = if(n == 0, 0,(1/(-2*n))*bernfrac(2*n)*d^(2*n-1)*sum(k=1,d-1, kronecker(d, k)*subst(bernpol(2*n),x,k/d)*(1/(-2*n)))) %o A370411 row(n) = {v=[]; for(k=2, 100, if(isfundamental(k), v=concat(v, denominator((2^(n*4)*n^2*z(n,k))/((2*n)!^2 * (k^(2*n-1))))))); v} \\ more accuracy here %o A370411 (Sage) # Only suitable for small n and k %o A370411 def T(n, k): %o A370411 discs = [fundamental_discriminant(i) for i in range(1, 4*k+10)] %o A370411 D = sorted(list(set(discs)))[k+1] %o A370411 zetaK = QuadraticField(D).zeta_function(1000) %o A370411 val = (zetaK(2*n)*sqrt(D)/(pi^(4*n))).n(1000).nearby_rational(2^-900) %o A370411 return val.denominator() # _Robin Visser_, Mar 19 2024 %Y A370411 Cf. A370412 (numerators). %Y A370411 Cf. A003658, A080891, A097916, A097917, A230375, A370413. %Y A370411 Cf. A000191, A000411, A000464, A064072, A064075. %Y A370411 Cf. A002432 (denominators zeta(2*n)/Pi^(2*n)). %Y A370411 Cf. A046988 (numerators zeta(2*n)/Pi^(2*n)). %Y A370411 Coefficients of Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively. %K A370411 nonn,tabl,frac %O A370411 0,2 %A A370411 _Thomas Scheuerle_, Feb 22 2024