A370414 T(n, k) = numerator([x^n] N(1/2, n, x)) where N(a, n, x) is the n-th Nørlund polynomial.
1, -1, 1, 1, -1, 1, 1, 1, -3, 1, -3, 1, 1, -1, 1, -19, -3, 5, 5, -5, 1, 79, -19, -9, 5, 5, -3, 1, 275, 79, -133, -21, 35, 7, -7, 1, -2339, 275, 79, -133, -21, 7, 7, -2, 1, -11813, -2339, 825, 79, -399, -189, 21, 3, -9, 1, 14217, -11813, -2339, 1375, 395, -399, -63, 15, 15, -5, 1
Offset: 0
Examples
The lists of rational coefficients start: [0] [ 1] [1] [ -1/4, 1] [2] [ 1/48, -1/2, 1] [3] [ 1/64, 1/16, -3/4, 1] [4] [ -3/1280, 1/16, 1/8, -1, 1] [5] [ -19/3072, -3/256, 5/32, 5/24, -5/4, 1] [6] [ 79/86016, -19/512, -9/256, 5/16, 5/16, -3/2, 1] [7] [275/49152, 79/12288, -133/1024, -21/256, 35/64, 7/16, -7/4, 1]
Links
- Niels Erik Nørlund, Vorlesungen über Differenzenrechnung, Springer 1924.
Programs
-
Maple
egf := (t/(exp(t) - 1))^(1/2)*exp(z*t): ser := series(egf, t, 16): ct := n -> n!*coeff(ser, t, n): seq(seq(numer(coeff(ct(n), z, k)), k = 0..n), n = 0..10);
-
Mathematica
Table[Numerator@CoefficientList[NorlundB[n, 1/2, x], x] , {n, 0, 10}] // Flatten
Formula
T(n, k) = numerator( n! * [z^k] [t^n] (t / (exp(t) - 1))^(1/2)*exp(z*t) ).
Comments