A370418 Triangle read by rows. T(n, k) = (n - k)! * (n + k)!.
1, 1, 2, 4, 6, 24, 36, 48, 120, 720, 576, 720, 1440, 5040, 40320, 14400, 17280, 30240, 80640, 362880, 3628800, 518400, 604800, 967680, 2177280, 7257600, 39916800, 479001600, 25401600, 29030400, 43545600, 87091200, 239500800, 958003200, 6227020800, 87178291200
Offset: 0
Examples
Triangle starts: [0] 1; [1] 1, 2; [2] 4, 6, 24; [3] 36, 48, 120, 720; [4] 576, 720, 1440, 5040, 40320; [5] 14400, 17280, 30240, 80640, 362880, 3628800; [6] 518400, 604800, 967680, 2177280, 7257600, 39916800, 479001600;
Crossrefs
Programs
-
Maple
T := (n, k) -> (n - k)! * (n + k)!: seq(seq(T(n, k), k = 0..n), n = 0..7);
-
Mathematica
Table[(n - k)!*(n + k)!, {n, 0, 7}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 05 2024 *)
Formula
Sum_{k=0..n} (-1)^k*T(n, k) = n!^2 / 2 + (-1)^n * (2*n + 2)! / (2*n + 2)^2.