This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370419 #47 Jun 27 2025 19:10:33 %S A370419 1,0,1,0,1,1,0,3,2,1,0,15,8,3,1,0,105,48,15,4,1,0,945,384,105,24,5,1, %T A370419 0,10395,3840,945,192,35,6,1,0,135135,46080,10395,1920,315,48,7,1,0, %U A370419 2027025,645120,135135,23040,3465,480,63,8,1 %N A370419 A(n, k) = 2^n*Pochhammer(k/2, n). Square array read by ascending antidiagonals. %H A370419 Paolo Xausa, <a href="/A370419/b370419.txt">Table of n, a(n) for n = 0..11324</a> (first 150 antidiagonals, flattened). %F A370419 The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-2)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k). %F A370419 From _Werner Schulte_, Mar 07 2024: (Start) %F A370419 A(n, k) = Product_{i=1..n} (2*i - 2 + k). %F A370419 E.g.f. of column k: Sum_{n>=0} A(n, k) * t^n / (n!) = (1/sqrt(1 - 2*t))^k. %F A370419 A(n, k) = A(n+1, k-2) / (k - 2) for k > 2. %F A370419 A(n, k) = Sum_{i=0..k-1} i! * A265649(n, i) * binomial(k-1, i) for k > 0. %F A370419 E.g.f. of row n > 0: Sum_{k>=1} A(n, k) * x^k / (k!) = (Sum_{k=1..n} A035342(n, k) * x^k) * exp(x). %F A370419 Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (k! * n!) = exp(x/sqrt(1 - 2*t)). %F A370419 Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (n!) = 1 / (1 - x/sqrt(1 - 2*t)). %F A370419 The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A035342(n, k) * k! for 1 <= k <= n and L(n, 0) = 0^n. Note that L(n, k) + L(n, k+1) = A265649(n, k) * k! for 0 <= k <= n. (End) %e A370419 The array starts: %e A370419 [0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A370419 [1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ... %e A370419 [2] 0, 3, 8, 15, 24, 35, 48, 63, 80, ... %e A370419 [3] 0, 15, 48, 105, 192, 315, 480, 693, 960, ... %e A370419 [4] 0, 105, 384, 945, 1920, 3465, 5760, 9009, 13440, ... %e A370419 [5] 0, 945, 3840, 10395, 23040, 45045, 80640, 135135, 215040, ... %e A370419 . %e A370419 Seen as the triangle T(n, k) = A(n - k, k): %e A370419 [0] 1; %e A370419 [1] 0, 1; %e A370419 [2] 0, 1, 1; %e A370419 [3] 0, 3, 2, 1; %e A370419 [4] 0, 15, 8, 3, 1; %e A370419 [5] 0, 105, 48, 15, 4, 1; %e A370419 [6] 0, 945, 384, 105, 24, 5, 1; %e A370419 . %e A370419 From _Werner Schulte_, Mar 07 2024: (Start) %e A370419 Illustrating the LU decomposition of A: %e A370419 / 1 \ / 1 1 1 1 1 ... \ / 1 1 1 1 1 ... \ %e A370419 | 0 1 | | 1 2 3 4 ... | | 0 1 2 3 4 ... | %e A370419 | 0 3 2 | * | 1 3 6 ... | = | 0 3 8 15 24 ... | %e A370419 | 0 15 18 6 | | 1 4 ... | | 0 15 48 105 192 ... | %e A370419 | 0 105 174 108 24 | | 1 ... | | 0 105 384 945 1920 ... | %e A370419 | . . . | | . . . | | . . . |. (End) %p A370419 A := (n, k) -> 2^n*pochhammer(k/2, n): %p A370419 for n from 0 to 5 do seq(A(n, k), k = 0..9) od; %p A370419 T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9); %p A370419 # Using the exponential generating functions of the columns: %p A370419 EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 2*x)^(-k/2); %p A370419 ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end: %p A370419 seq(lprint(EGFcol(n, 9)), n = 0..8); %p A370419 # Using the generating polynomials for the rows: %p A370419 P := (n, x) -> local k; add(Stirling1(n, k)*(-2)^(n - k)*x^k, k=0..n): %p A370419 seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5); %p A370419 # Implementing the comment of _Werner Schulte_ about the LU decomposition of A: %p A370419 with(LinearAlgebra): %p A370419 L := Matrix(7, 7, (n, k) -> A371025(n - 1, k - 1)): %p A370419 U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)): %p A370419 MatrixMatrixMultiply(L, Transpose(U)); # _Peter Luschny_, Mar 08 2024 %t A370419 A370419[n_, k_] := 2^n*Pochhammer[k/2, n]; %t A370419 Table[A370419[n-k, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Mar 06 2024 *) %o A370419 (SageMath) %o A370419 def A(n, k): return 2**n * rising_factorial(k/2, n) %o A370419 for n in range(6): print([A(n, k) for k in range(9)]) %Y A370419 Columns: A000007, A001147, A000165, A001147 (shifted), A002866, A051577, A051578, A051579, A051580. %Y A370419 Rows: A000012, A001477, A005563, A370912, A190577. %Y A370419 Cf. A035342, A265649, A370890, A370982 (row sums of the triangle), A370915, A371025, A371077. %K A370419 nonn,tabl %O A370419 0,8 %A A370419 _Peter Luschny_, Mar 04 2024