cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370419 A(n, k) = 2^n*Pochhammer(k/2, n). Square array read by ascending antidiagonals.

This page as a plain text file.
%I A370419 #47 Jun 27 2025 19:10:33
%S A370419 1,0,1,0,1,1,0,3,2,1,0,15,8,3,1,0,105,48,15,4,1,0,945,384,105,24,5,1,
%T A370419 0,10395,3840,945,192,35,6,1,0,135135,46080,10395,1920,315,48,7,1,0,
%U A370419 2027025,645120,135135,23040,3465,480,63,8,1
%N A370419 A(n, k) = 2^n*Pochhammer(k/2, n). Square array read by ascending antidiagonals.
%H A370419 Paolo Xausa, <a href="/A370419/b370419.txt">Table of n, a(n) for n = 0..11324</a> (first 150 antidiagonals, flattened).
%F A370419 The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-2)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k).
%F A370419 From _Werner Schulte_, Mar 07 2024: (Start)
%F A370419 A(n, k) = Product_{i=1..n} (2*i - 2 + k).
%F A370419 E.g.f. of column k: Sum_{n>=0} A(n, k) * t^n / (n!) = (1/sqrt(1 - 2*t))^k.
%F A370419 A(n, k) = A(n+1, k-2) / (k - 2) for k > 2.
%F A370419 A(n, k) = Sum_{i=0..k-1} i! * A265649(n, i) * binomial(k-1, i) for k > 0.
%F A370419 E.g.f. of row n > 0: Sum_{k>=1} A(n, k) * x^k / (k!) = (Sum_{k=1..n} A035342(n, k) * x^k) * exp(x).
%F A370419 Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (k! * n!) = exp(x/sqrt(1 - 2*t)).
%F A370419 Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (n!) = 1 / (1 - x/sqrt(1 - 2*t)).
%F A370419 The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A035342(n, k) * k! for 1 <= k <= n and L(n, 0) = 0^n. Note that L(n, k) + L(n, k+1) = A265649(n, k) * k! for 0 <= k <= n. (End)
%e A370419 The array starts:
%e A370419 [0] 1,   1,    1,     1,     1,     1,     1,      1,      1, ...
%e A370419 [1] 0,   1,    2,     3,     4,     5,     6,      7,      8, ...
%e A370419 [2] 0,   3,    8,    15,    24,    35,    48,     63,     80, ...
%e A370419 [3] 0,  15,   48,   105,   192,   315,   480,    693,    960, ...
%e A370419 [4] 0, 105,  384,   945,  1920,  3465,  5760,   9009,  13440, ...
%e A370419 [5] 0, 945, 3840, 10395, 23040, 45045, 80640, 135135, 215040, ...
%e A370419 .
%e A370419 Seen as the triangle T(n, k) = A(n - k, k):
%e A370419 [0] 1;
%e A370419 [1] 0,   1;
%e A370419 [2] 0,   1,   1;
%e A370419 [3] 0,   3,   2,   1;
%e A370419 [4] 0,  15,   8,   3,  1;
%e A370419 [5] 0, 105,  48,  15,  4, 1;
%e A370419 [6] 0, 945, 384, 105, 24, 5, 1;
%e A370419 .
%e A370419 From _Werner Schulte_, Mar 07 2024: (Start)
%e A370419 Illustrating the LU decomposition of A:
%e A370419     / 1                \   / 1 1 1 1 1 ... \   / 1   1   1   1    1 ... \
%e A370419     | 0   1            |   |   1 2 3 4 ... |   | 0   1   2   3    4 ... |
%e A370419     | 0   3   2        | * |     1 3 6 ... | = | 0   3   8  15   24 ... |
%e A370419     | 0  15  18   6    |   |       1 4 ... |   | 0  15  48 105  192 ... |
%e A370419     | 0 105 174 108 24 |   |         1 ... |   | 0 105 384 945 1920 ... |
%e A370419     | . . .            |   | . . .         |   | . . .                  |. (End)
%p A370419 A := (n, k) -> 2^n*pochhammer(k/2, n):
%p A370419 for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
%p A370419 T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
%p A370419 # Using the exponential generating functions of the columns:
%p A370419 EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 2*x)^(-k/2);
%p A370419 ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
%p A370419 seq(lprint(EGFcol(n, 9)), n = 0..8);
%p A370419 # Using the generating polynomials for the rows:
%p A370419 P := (n, x) -> local k; add(Stirling1(n, k)*(-2)^(n - k)*x^k, k=0..n):
%p A370419 seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
%p A370419 # Implementing the comment of _Werner Schulte_ about the LU decomposition of A:
%p A370419 with(LinearAlgebra):
%p A370419 L := Matrix(7, 7, (n, k) -> A371025(n - 1,  k - 1)):
%p A370419 U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
%p A370419 MatrixMatrixMultiply(L, Transpose(U));  #  _Peter Luschny_, Mar 08 2024
%t A370419 A370419[n_, k_] := 2^n*Pochhammer[k/2, n];
%t A370419 Table[A370419[n-k, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Mar 06 2024 *)
%o A370419 (SageMath)
%o A370419 def A(n, k): return 2**n * rising_factorial(k/2, n)
%o A370419 for n in range(6): print([A(n, k) for k in range(9)])
%Y A370419 Columns: A000007, A001147, A000165, A001147 (shifted), A002866, A051577, A051578, A051579, A051580.
%Y A370419 Rows: A000012, A001477, A005563, A370912, A190577.
%Y A370419 Cf. A035342, A265649, A370890, A370982 (row sums of the triangle), A370915, A371025, A371077.
%K A370419 nonn,tabl
%O A370419 0,8
%A A370419 _Peter Luschny_, Mar 04 2024