cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370420 Number of genus g partitions of the n-set which are partitions into k nonempty subsets (blocks). Flattened 3-dimensional array read by n, then by g:0..floor(n-1)/2, then by k:1..n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 0, 1, 0, 0, 1, 10, 20, 10, 1, 0, 5, 5, 0, 0, 1, 15, 50, 50, 15, 1, 0, 15, 40, 15, 0, 0, 0, 1, 0, 0, 0, 0, 1, 21, 105, 175, 105, 21, 1, 0, 35, 175, 175, 35, 0, 0, 0, 7, 21, 0, 0, 0, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 70, 560, 1050, 560, 70, 0, 0, 0, 28, 210, 161, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Robert Coquereaux, Feb 18 2024

Keywords

Comments

Genus-dependent Stirling numbers of the second kind S2(n,k,g), 1 <= n, 1 <= k <= n, 0 <= g <= floor((n-1)/2). This is an infinite three-dimensional array. Its first 15 rows (n:1..15) are given by the table (see Links) taken from the article by Robert Coquereaux and Jean-Bernard Zuber (where a transpose of this table is given), see p. 32. These 15 rows determine 589 entries of the sequence (Data).
Example: the numbers S2(5,k,0), k=1..5, are {1,10,20,10,1} and appear on line 5, column 1; the numbers S2(5,k,1), k=1..5, are {0,5,5,0,0} and appear on line 5, column 2. Values of S2(n,k,g) for g > floor((n-1)/2) are equal to 0 and are not displayed.
Summing S2(n,k,g) over k gives genus-dependent Bell numbers B(n,g), A370235. Summing S2(n,k,g) over g gives S2(n,k), the Stirling numbers of the second kind A008277. Summing S2(n,k,g) over k and g gives the Bell numbers B(n), A000110. Example: S2(5,k,0) = 1, 10, 20, 10, 1 and S2(5,k,1) = 0, 5, 5, 0, 0 for k = 1..5; therefore S2(5,k) = 1, 15, 25, 10, 1, B(5,0) = 42, B(5,1) = 10, and B(5) = 52.

Examples

			For n:1..7, g:1..floor(n-1)/2, k:1..n. The 3-dimensional array begins:
  {1};
  {1,1};
  {1,3,1};
  {1,6,6,1},               {0,1,0,0};
  {1,10,20,10,1},          {0,5,5,0,0};
  {1,15,50,50,15,1},       {0,15,40,15,0,0},      {0,1,0,0,0,0};
  {1,21,105,175,105,21,1}, {0,35,175,175,35,0,0}, {0,7,21,0,0,0,0};
		

Crossrefs

Cf. A001263 (g=0), A370236 (g=1), A297178 (g=2).
Cf. A370235 (sum over k).

Programs

  • Mathematica
    See Links

Formula

No general formula is currently known. In the particular cases g=0, 1, 2, a formula is known: see Crossrefs.