A370423 Integers k such that the maximum number of subgroups of a group of order k is exactly k.
1, 2, 6, 28, 260
Offset: 1
Programs
-
Magma
// to get the terms up to 1023. i:=1; while i lt 1024 do // terms up to 1023 allGroupsHaveLessThanOrEqualNumberOfSubgroups:=1; someGroupWithExactNumberOfSubgroups:=0; j:=1; while j le NumberOfSmallGroups(i) do //iterate through all the groups of order i G:=SmallGroup(i, j); if #AllSubgroups(G) eq i then someGroupWithExactNumberOfSubgroups:=1; end if; if #AllSubgroups(G) gt i then //some group has > i subgroups allGroupsHaveLessThanOrEqualNumberOfSubgroups:=0; break; end if; j:=j+1; end while; if allGroupsHaveLessThanOrEqualNumberOfSubgroups eq 1 and someGroupWithExactNumberOfSubgroups eq 1 then i; end if; i:=i+1; end while;
Comments