This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370427 #13 Feb 21 2024 02:18:11 %S A370427 0,0,1,0,1,0,1,0,1,0,5,4,3,2,1,0,1,0,9,8,1,0,9,8,3,2,1,0,3,2,1,0,1,0, %T A370427 17,16,9,8,25,24,5,4,21,20,1,0,17,16,3,2,1,0,11,10,9,8,7,6,5,4,3,2,1, %U A370427 0,1,0,33,32,17,16,49,48,1,0,33,32,17,16,49,48 %N A370427 a(n) is the least k >= 0 such that n OR k is a binary palindrome (where OR denotes the bitwise OR operator). %C A370427 The binary expansions of n and a(n) have no common 1's. %H A370427 Paolo Xausa, <a href="/A370427/b370427.txt">Table of n, a(n) for n = 0..16383</a> %H A370427 Rémy Sigrist, <a href="/A370427/a370427.png">Scatterplot of (x, y) such that x OR y is a binary palindrome and x, y < 2^10</a> %H A370427 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A370427 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a> %F A370427 n AND a(n) = 0 (where AND denotes the bitwise AND operator). %F A370427 a(n) = A030101(n) - (n AND A030101(n)). %F A370427 a(n) = A030101(n) - A175297(n) (for any n > 0). %F A370427 a(n) = 0 iff n belongs to A006995. %e A370427 The first terms, alongside the corresponding binary expansions, are: %e A370427 n a(n) bin(n) bin(a(n)) bin(n OR a(n)) %e A370427 -- ---- ------ --------- -------------- %e A370427 0 0 0 0 0 %e A370427 1 0 1 0 1 %e A370427 2 1 10 1 11 %e A370427 3 0 11 0 11 %e A370427 4 1 100 1 101 %e A370427 5 0 101 0 101 %e A370427 6 1 110 1 111 %e A370427 7 0 111 0 111 %e A370427 8 1 1000 1 1001 %e A370427 9 0 1001 0 1001 %e A370427 10 5 1010 101 1111 %e A370427 11 4 1011 100 1111 %e A370427 12 3 1100 11 1111 %e A370427 13 2 1101 10 1111 %e A370427 14 1 1110 1 1111 %e A370427 15 0 1111 0 1111 %t A370427 A370427[n_] := With[{r = IntegerReverse[n, 2]}, r - BitAnd[n, r]]; %t A370427 Array[A370427, 2^7, 0] (* _Paolo Xausa_, Feb 20 2024 *) %o A370427 (PARI) a(n) = my (r = fromdigits(Vecrev(binary(n)), 2)); r - bitand(n, r) %Y A370427 Cf. A006995, A030101, A175297, A344220 (XOR variant). %K A370427 nonn,base,easy,look %O A370427 0,11 %A A370427 _Rémy Sigrist_, Feb 18 2024