cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370441 Expansion of g.f. A(x) satisfying A(x) = A( x^3 + 3*A(x)^4 )^(1/3), with A(0)=0, A'(0)=1.

This page as a plain text file.
%I A370441 #7 Mar 10 2024 00:20:36
%S A370441 1,1,3,12,54,261,1324,6952,37461,205977,1151034,6518085,37321748,
%T A370441 215714904,1256889150,7374790400,43537323406,258417908640,
%U A370441 1541250594499,9231988699115,55514033703450,334993491267955,2027954403410504,12312557796833622,74955173794196890,457431093085335708
%N A370441 Expansion of g.f. A(x) satisfying A(x) = A( x^3 + 3*A(x)^4 )^(1/3), with A(0)=0, A'(0)=1.
%C A370441 Compare the g.f. to the following identities:
%C A370441 (1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
%C A370441 (2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
%C A370441 where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
%F A370441 G.f. A(x) = Sum_{n>=1} a(n) * x^n satisfies:
%F A370441 (1) A(x) = A( x^3 + 3*A(x)^4 )^(1/3).
%F A370441 (2) B(x)^3 = B(x^3) - 3*x^4, where A(B(x)) = x.
%F A370441 (3) A(x) = x*D(A(x)) where D(x) = x/Series_Reversion(A(x)) is the g.f. of A091190.
%e A370441 G.f.: A(x) = x + x^2 + 3*x^3 + 12*x^4 + 54*x^5 + 261*x^6 + 1324*x^7 + 6952*x^8 + 37461*x^9 + 205977*x^10 + 1151034*x^11 + 6518085*x^12 + ...
%e A370441 where A(x)^3 = A( x^3 + 3*A(x)^4 ).
%e A370441 RELATED SERIES.
%e A370441 A(x)^3 = x^3 + 3*x^4 + 12*x^5 + 55*x^6 + 270*x^7 + 1386*x^8 + 7347*x^9 + 39897*x^10 + 220779*x^11 + 1240392*x^12 + ...
%e A370441 A(x)^4 = x^4 + 4*x^5 + 18*x^6 + 88*x^7 + 451*x^8 + 2388*x^9 + 12958*x^10 + 71668*x^11 + 402489*x^12 + ...
%e A370441 Let B(x) denote the series reversion of A(x), A(B(x)) = x, where
%e A370441 B(x) = x - x^2 - x^3 - 2*x^4 - 4*x^5 - 9*x^6 - 22*x^7 - 55*x^8 - 142*x^9 - 376*x^10 - 1011*x^11 - 2758*x^12 + ... + (-1)^(n+1)*A107092(n)*x^n + ...
%e A370441 then B(x)^3 = B(x^3) - 3*x^4, where
%e A370441 B(x)^3 = x^3 - 3*x^4 - x^6 - x^9 - 2*x^12 - 4*x^15 - 9*x^18 - 22*x^21 - 55*x^24 - 142*x^27 - 376*x^30 - 1011*x^33 - 2758*x^36 + ...
%e A370441 Also, we have D(x) = x/B(x) is the g.f. of A091190, which begins
%e A370441 D(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 97*x^6 + 273*x^7 + 778*x^8 + 2240*x^9 + 6499*x^10 + 18976*x^11 + ... + A091190(n)*x^n + ...
%e A370441 such that D(x)^3 = D(x^3)/(1 - 3*x*D(x^3)).
%o A370441 (PARI) {a(n) = my(A=[1],G); for(i=1,n, G = x*Ser(A); A = Vec((subst(G,x, x^3 + 3*x^2*G^2) + x^4*O(x^#A))^(1/3)); );A[n+1]}
%o A370441 for(n=0,40, print1(a(n),", "))
%Y A370441 Cf. A107092, A091190, A370440.
%K A370441 nonn
%O A370441 1,3
%A A370441 _Paul D. Hanna_, Mar 09 2024