cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370447 Palindromic prime numbers that consist only of the digits {0,1,6,8,9} and which remain palindromic primes when their digits are rotated by 180 degrees.

Original entry on oeis.org

11, 101, 181, 16661, 18181, 19991, 1008001, 1160611, 1180811, 1190911, 1688861, 1880881, 1881881, 1988891, 100111001, 100888001, 101616101, 101919101, 106111601, 106191601, 108101801, 109111901, 109161901, 110111011, 111010111, 111181111, 116010611, 116696611
Offset: 1

Views

Author

Jean-Marc Rebert, Feb 18 2024

Keywords

Comments

10886968801 is the least palindromic prime of this sequence for which the set of digits is {0,1,6,8,9}.
Terms must start and end with digit 1 and be of odd length for n > 1. - Michael S. Branicky, Feb 19 2024

Examples

			16661 becomes 19991 under such a rotation, and both are palindromic primes.
		

Crossrefs

Subsequence of palindromes in A007597.

Programs

  • PARI
    rot(u)=my(v=[]);for(i=1,#u,my(x=u[i]);if(x==6,v=concat(9,v),x==9,v=concat(6,v),vecsearch([0,1,8],x)>0,v=concat(x,v)));v
    is(x)=my(u=digits(x),su=Set(u));if(setintersect(su,Set([0,1,6,8,9]))!=su||!isprime(x)||Vecrev(u)!=u,return(0));my(y=fromdigits(rot(u)));return(isprime(y))
    
  • Python
    from sympy import isprime
    from itertools import product, count, islice
    def flip180(s): return s[::-1].translate({54:57, 57:54})
    def agen(): # generator of terms
        yield 11
        for digits in count(3, 2):
            for rest in product("01689", repeat=digits//2-1):
                for mid in "01689":
                    s = "".join(("1",)+rest+(mid,)+rest[::-1]+("1",))
                    if isprime(t:=int(s)) and isprime(int(flip180(s))):
                        yield t
    print(list(islice(agen(), 28))) # Michael S. Branicky, Feb 19 2024