A370447 Palindromic prime numbers that consist only of the digits {0,1,6,8,9} and which remain palindromic primes when their digits are rotated by 180 degrees.
11, 101, 181, 16661, 18181, 19991, 1008001, 1160611, 1180811, 1190911, 1688861, 1880881, 1881881, 1988891, 100111001, 100888001, 101616101, 101919101, 106111601, 106191601, 108101801, 109111901, 109161901, 110111011, 111010111, 111181111, 116010611, 116696611
Offset: 1
Examples
16661 becomes 19991 under such a rotation, and both are palindromic primes.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..16934 (all terms < 10^20)
- Carlos Rivera, Puzzle 1163. Palindromic primes that are semiprimes when turned upside down, The Prime Puzzles & Problems Connection.
Programs
-
PARI
rot(u)=my(v=[]);for(i=1,#u,my(x=u[i]);if(x==6,v=concat(9,v),x==9,v=concat(6,v),vecsearch([0,1,8],x)>0,v=concat(x,v)));v is(x)=my(u=digits(x),su=Set(u));if(setintersect(su,Set([0,1,6,8,9]))!=su||!isprime(x)||Vecrev(u)!=u,return(0));my(y=fromdigits(rot(u)));return(isprime(y))
-
Python
from sympy import isprime from itertools import product, count, islice def flip180(s): return s[::-1].translate({54:57, 57:54}) def agen(): # generator of terms yield 11 for digits in count(3, 2): for rest in product("01689", repeat=digits//2-1): for mid in "01689": s = "".join(("1",)+rest+(mid,)+rest[::-1]+("1",)) if isprime(t:=int(s)) and isprime(int(flip180(s))): yield t print(list(islice(agen(), 28))) # Michael S. Branicky, Feb 19 2024
Comments