This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A370458 #11 Feb 19 2024 12:10:10 %S A370458 1,3,45,11475,752014125,3229876072253041875, %T A370458 59580697294650083747194059426068878125, %U A370458 20274260698223485458204828871028994444941136941453077244297515184669623921875 %N A370458 Partial products of A051179. %H A370458 Amiram Eldar, <a href="/A370458/b370458.txt">Table of n, a(n) for n = 0..10</a> %H A370458 Donald Knuth, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.120.01.076">Problem 11685</a>, The American Mathematical Monthly, Vol. 120, No. 1 (2013), p. 76; <a href="https://www.jstor.org/stable/10.4169/amer.math.monthly.122.01.75">The Reciprocal of the Thue-Morse Constant</a>, Solution to Problem 11685 by Traian Viteam, ibid., Vol. 122, No. 1 (2015), pp. 81-82. %H A370458 Roberto Tauras, <a href="https://www.mat.uniroma2.it/~tauraso/AMM/AMM11685.pdf">Problem 11685</a>. %F A370458 a(n) = Product_{k=0..n} A051179(k). %F A370458 Sum_{n>=0} 1/a(n) = A258714 = 1/A215016 - 3/2 = 1.355642702854... (Knuth, 2013). %t A370458 FoldList[Times, Table[2^(2^n) - 1, {n, 0, 7}]] %o A370458 (PARI) lista(nmax) = {my(v = 1); for(i = 0, nmax, v *= (2^(2^i) - 1); print1(v, ", "));} %o A370458 (Python) %o A370458 from math import prod %o A370458 def A370458(n): return prod((1<<(1<<i))-1 for i in range(n+1)) # _Chai Wah Wu_, Feb 19 2024 %Y A370458 Cf. A051179, A215016, A258714, A258715, A258716. %K A370458 nonn,easy %O A370458 0,2 %A A370458 _Amiram Eldar_, Feb 19 2024