cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370462 E.g.f. satisfies A(x) = log(1 + x)/(1 - A(x))^2.

This page as a plain text file.
%I A370462 #20 Sep 09 2024 09:34:18
%S A370462 0,1,3,32,506,11254,319486,11063352,452075928,21295486272,
%T A370462 1136180493504,67720154888352,4459760039965248,321592207168637664,
%U A370462 25201588848786782688,2132592146864957906688,193806614782424556184320,18825630812739265968357120
%N A370462 E.g.f. satisfies A(x) = log(1 + x)/(1 - A(x))^2.
%H A370462 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A370462 a(n) = Sum_{k=1..n} (3*k-2)!/(2*k-1)! * Stirling1(n,k).
%F A370462 a(n) ~ n^(n-1) / (sqrt(2) * (exp(4/27) - 1)^(n - 1/2) * exp(n + 2/27)). - _Vaclav Kotesovec_, Mar 19 2024
%F A370462 E.g.f.: Series_Reversion( exp(x * (1 - x)^2) - 1 ). - _Seiichi Manyama_, Sep 09 2024
%t A370462 Table[Sum[(3*k - 2)!/(2*k - 1)!*StirlingS1[n, k], {k, 1, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Mar 19 2024 *)
%o A370462 (PARI) a(n) = sum(k=1, n, (3*k-2)!/(2*k-1)!*stirling(n, k, 1));
%Y A370462 Cf. A087138, A370463.
%K A370462 nonn
%O A370462 0,3
%A A370462 _Seiichi Manyama_, Mar 18 2024