cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370469 Triangle read by columns where T(n,k) is the number of points in Z^n such that |x1| + ... + |xn| = k, |x1|, ..., |xn| > 0.

This page as a plain text file.
%I A370469 #49 Apr 28 2024 11:30:14
%S A370469 2,2,4,2,8,8,2,12,24,16,2,16,48,64,32,2,20,80,160,160,64,2,24,120,320,
%T A370469 480,384,128,2,28,168,560,1120,1344,896,256,2,32,224,896,2240,3584,
%U A370469 3584,2048,512,2,36,288,1344,4032,8064,10752,9216,4608,1024
%N A370469 Triangle read by columns where T(n,k) is the number of points in Z^n such that |x1| + ... + |xn| = k, |x1|, ..., |xn| > 0.
%C A370469 T(n,k) is the number of points on the n-dimensional cross polytope with facets at distance k from the origin which have no coordinate equal to 0.
%C A370469 T(n,n) = 2^n. The (n-1)-dimensional simplex at distance n from the origin in Z^n has exactly 1 point with no zero coordinates, at (1,1,...,1). There are 2^n (n-1)-dimensional simplexes at distance n from the origin as part of the cross polytope in Z^n. (The lower dimensional facets do not count as they have at least one 0 coordinate.)
%C A370469 T(2*n,3*n) = T(2*n+1,3*n), and this is A036909.
%F A370469 T(n,k) = binomial(k-1,n-1)*2^n.
%F A370469 G.f.: 2*x*y/(1 - y - 2*x*y). - _Stefano Spezia_, Apr 27 2024
%e A370469  n\k 1 2 3  4  5   6   7    8    9    10    11    12     13     14      15
%e A370469    -----------------------------------------------------------------------
%e A370469  1 | 2 2 2  2  2   2   2    2    2     2     2     2      2      2       2
%e A370469  2 |   4 8 12 16  20  24   28   32    36    40    44     48     52      56
%e A370469  3 |     8 24 48  80 120  168  224   288   360   440    528    624     728
%e A370469  4 |       16 64 160 320  560  896  1344  1920  2640   3520   4576    5824
%e A370469  5 |          32 160 480 1120 2240  4032  6720 10560  15840  22880   32032
%e A370469  6 |              64 384 1344 3584  8064 16128 29568  50688  82368  128128
%e A370469  7 |                 128  896 3584 10752 26880 59136 118272 219648  384384
%e A370469  8 |                      256 2048  9216 30720 84480 202752 439296  878592
%e A370469  9 |                           512  4608 23040 84480 253440 658944 1537536
%e A370469 10 |                                1024 10240 56320 225280 732160 2050048
%e A370469 11 |                                      2048 22528 135168 585728 2050048
%e A370469 12 |                                            4096  49152 319488 1490944
%e A370469 13 |                                                   8192 106496  745472
%e A370469 14 |                                                         16384  229376
%e A370469 15 |                                                                 32768
%e A370469 The cross polytope in Z^3 (the octahedron) with points at distance 3 from the origin has 8 triangle facets, each with edge length 4. There is one point in the center of each triangle with coordinates (+-1,+-1,+-1).
%t A370469 T[n_,k_]:=Binomial[k-1,n-1]*2^n; Table[T[n,k],{k,10},{n,k}]//Flatten
%o A370469 (Python)
%o A370469 from math import comb
%o A370469 def A370469_T(n,k): return comb(k-1,n-1)<<n # _Chai Wah Wu_, Apr 25 2024
%Y A370469 Cf. A033996, A333714 (n=3)
%Y A370469 Cf. A102860 (n=4).
%Y A370469 Cf. A036289, A097064, A134401 (+1-diagonal).
%Y A370469 Cf. A001815 (+2-diagonal).
%Y A370469 Cf. A371064.
%Y A370469 Cf. A036909.
%Y A370469 2 * A013609.
%K A370469 tabl,nonn
%O A370469 1,1
%A A370469 _Shel Kaphan_, Mar 30 2024