cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370472 G.f. satisfies A(x) = 1 + x * A(x) * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4).

This page as a plain text file.
%I A370472 #18 Apr 04 2024 09:47:06
%S A370472 1,1,3,15,88,565,3844,27228,198670,1482981,11271117,86926262,
%T A370472 678568982,5351340410,42570335161,341201704970,2752693408051,
%U A370472 22335989938093,182166978172055,1492496248447713,12278191839580716,101382009468089580,839932374157895727
%N A370472 G.f. satisfies A(x) = 1 + x * A(x) * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4).
%F A370472 G.f. A(x) satisfies:
%F A370472 (1) A(x)^2 = 1 + x * A(x) * (1 + A(x)^5).
%F A370472 (2) A(x) = sqrt(B(x)) where B(x) is the g.f. of A370471.
%F A370472 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n/2+5*k/2+1/2,n)/(n+5*k+1).
%o A370472 (PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(n/2+5*k/2+1/2, n)/(n+5*k+1));
%Y A370472 Cf. A106228, A370471.
%Y A370472 Cf. A370473, A370476.
%K A370472 nonn
%O A370472 0,3
%A A370472 _Seiichi Manyama_, Mar 31 2024