cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370476 G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4).

This page as a plain text file.
%I A370476 #17 Apr 04 2024 09:47:18
%S A370476 1,1,5,38,342,3377,35371,385945,4339656,49932707,585090560,6957809536,
%T A370476 83757820470,1018680937003,12498390564184,154508184836297,
%U A370476 1922689912844045,24064811129732875,302750645498966609,3826284443456719470,48557449822608739500
%N A370476 G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4).
%F A370476 G.f. A(x) satisfies:
%F A370476 (1) A(x)^2 = 1 + x * A(x)^3 * (1 + A(x)^5).
%F A370476 (2) A(x) = sqrt(B(x)) where B(x) is the g.f. of A370475.
%F A370476 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*n/2+5*k/2+1/2,n)/(3*n+5*k+1).
%o A370476 (PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n/2+5*k/2+1/2, n)/(3*n+5*k+1));
%Y A370476 Cf. A001764, A271469.
%Y A370476 Cf. A370472, A370473.
%Y A370476 Cf. A370475.
%K A370476 nonn
%O A370476 0,3
%A A370476 _Seiichi Manyama_, Mar 31 2024