cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370478 G.f. satisfies A(x) = ( 1 + x * (A(x)^(1/3) / (1-x))^(3/2) )^3.

This page as a plain text file.
%I A370478 #15 Mar 31 2024 08:45:54
%S A370478 1,3,12,46,174,654,2451,9177,34368,128826,483531,1817673,6844294,
%T A370478 25815660,97539435,369154485,1399419360,5313440610,20205330660,
%U A370478 76946898744,293443125804,1120565939780,4284550682478,16402204879386,62864294076480,241205747620740
%N A370478 G.f. satisfies A(x) = ( 1 + x * (A(x)^(1/3) / (1-x))^(3/2) )^3.
%F A370478 G.f.: B(x)^3 where B(x) is the g.f. of A071724.
%F A370478 a(n) = 3 * Sum_{k=0..n} binomial(3*k/2+3,k) * binomial(n+k/2-1,n-k)/(3*k/2+3).
%o A370478 (PARI) my(N=30, x='x+O('x^N)); Vec((1+x*((1-sqrt(1-4*x))/(2*x))^3)^3)
%o A370478 (PARI) a(n, r=3, s=3/2, t=3/2, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
%Y A370478 Cf. A058396, A370480.
%Y A370478 Cf. A071724, A370477.
%K A370478 nonn
%O A370478 0,2
%A A370478 _Seiichi Manyama_, Mar 31 2024