cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370483 a(n) = Product_{k=0..n} binomial(n^2 + k^2, k^2).

This page as a plain text file.
%I A370483 #7 Mar 31 2024 07:47:36
%S A370483 1,2,350,347633000,101143578356902991250,
%T A370483 422044560230008480282938965899488406272,
%U A370483 1208807563912714402070105775158111317516306396248661153276031151000
%N A370483 a(n) = Product_{k=0..n} binomial(n^2 + k^2, k^2).
%F A370483 a(n) = Product_{k=0..n} binomial(n^2 + k^2, n^2).
%F A370483 a(n) = A371643(n) / ((n^2)!^(n+1) * A255322(n)).
%F A370483 a(n) ~ 2^(4*n^3/3 + n^2 + n/6 + 1/4) * exp((Pi-4)*n^3/3 + Pi*n/4) / (A255504 * n^(n + 1/2) * Pi^(n/2)).
%t A370483 Table[Product[Binomial[n^2 + k^2, n^2], {k, 0, n}], {n, 0, 8}]
%t A370483 Table[Product[Binomial[n^2 + k^2, k^2], {k, 0, n}], {n, 0, 8}]
%Y A370483 Cf. A255322, A371643.
%K A370483 nonn
%O A370483 0,2
%A A370483 _Vaclav Kotesovec_, Mar 31 2024