A370490 The denominators of a series that converges to the Omega constant (A030178) obtained using Whittaker's root series formula.
2, 14, 259, 9657, 200187, 18671081, 7313976065, 1273374259615, 285038137030769, 79755360301275363, 9091712937155442435, 149243024021521700285, 1085736156475373087072485, 3071709182054627484879798019, 2005459027715242401528647218817, 1496371535371115486607560677791759
Offset: 1
Keywords
Examples
a(1) is the denominator of -1/-2 = 1/2. a(2) is the denominator of -(1/2)/((-2)*det ToeplitzMatrix((-2,1),(-2,1/2!))) = -(1/2)/((-2)*(7/2)) = 1/14. a(3) is the denominator of -det ToeplitzMatrix((1/2!,-2),(1/2!,-1/3!))/(det ToeplitzMatrix((-2,1),(-2,1/2!))*det ToeplitzMatrix((-2,1,0),(-2,1/2!,-1/3!))) = -(-1/12)/((7/2)*(-37/6)) = -1/259.
Links
- E. T. Whittaker and G. Robinson, The Calculus of Observations, London: Blackie & Son, Ltd. 1924, pp. 120-123.
Formula
for n>1, a(n) is the denominator of the simplified fraction -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n-1)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))), where c(0)=1, c(1)=-2, c(n) = (-1)^n/n!.
Extensions
a(9)-a(16) from Chai Wah Wu, Mar 23 2024
Comments